Answer:
N
Explanation:
We are given that three charged particle are placed at each corner of equilateral triangle.




Side of equilateral triangle =3.3 cm=
We know that each angle of equilateral angle=
Net force=F =
Where k=
If we bisect the angle at
then we have 30 degrees from there to either charge.
Direction of vertical force due to charge
and 
Therefore, force will be added
Vertical force=
Vertical net force=
Vertical force =
Vertical force=
(towards 
Horizontal component are opposite in direction then will b subtracted
Horizontal force=
Horizontal force=
N(towards 
Net electric force acting on particle 3 due to particle =
Net force=
Net force=
N
Answer:
2234.63
Explanation:
Work done per cycle by the engine is calculated as;

#Since volume doesn't change in the isochoric steps, there is no work done, hence:

#For an isothermal change of state(ideal gas):

#for the expansion process:



Hence, the engine does 2234.63J per second.
Answer:
The answer is given as follows,
Explanation:
Gold large-sized weight 100 g < M < 250g
50 g < Magenta small-sized weight < 100g
100g < Blue medium-sized weight < 250g
Hence,
100g < Blue medium-sized weight < 250g
50 g < Magenta small-sized weight < 100g
100 g < Gold large-sized weight < 250g.
Answer:
Answer is option b) 2.97m
Explanation:
With the relationship between the force exerted by the runner and the mass that it has, I can determine the acceleration it will have:
F= m × a ⇒ a= (650 kg ×(m/s^2)) / (70kg)= 9.286 (m/s^2)
With the acceleration that prints the force exerted and the time I can determine the distance traveled in the interval:
Distance= (1/2) × a × t^2 = (1/2) × 9.286 (m/s^2) × ((0.8s)^2)= 2.97m