The energy of a photon is given by:

where h is the Planck constant and f is the photon frequency.
We know the energy of the photon,

, so we can rearrange the equation to calculate the frequency of the photon:

And now we can use the following relationship between frequency f, wavelength

and speed of light c to find the wavelength of the photon:
Answer:
the ball is travelling very fast and the player can get injured if he doesn't wear gloves
Explanation:
Answer:
Looks like you have:
a = -.324 cos 2.5 t
In this case ω^2 A = .324
ω = 2.5
f = ω / (2 * pi) = 2.5 / 6.28 = .40 / sec
The magnitude of the magnetic moment due to the electron's motion is
.
<h3>
What is magnetic moment?</h3>
The magnetic pull and direction of a magnet or other object that produces a magnetic field are referred to as the magnetic moment in electromagnetism. Things that have magnetic moments include electromagnets, permanent magnets, various compounds, elementary particles like electrons, and a number of celestial objects (such as many planets, some moons, stars, etc).
The term "magnetic moment" really refers to the magnetic dipole moment of a system, which is the portion of the magnetic moment that can be represented by an equivalent magnetic dipole or a pair of magnetic north and south poles that are only very slightly apart. The magnetic dipole component is adequate for sufficiently small magnets or over sufficiently large distances.
Calculations:
radius= 
velocity=
Working formula, M=N/A


=


=
M=
=
To learn more about magnetic moment ,visit:
brainly.com/question/14298729
#SPJ4