Answer:
a) Your player
b) Observer's player
c) Each measures their own first
Explanation:
Because given problem is having relative velocity to each other. The person sitting on the train is moving with a very high speed relative to the person standing next to the track.
In this case, the clock situated in the train will be running slow with respect to the stationary frame of reference
Answer:
8,809.024m
Explanation:
Displacement , y = (gt^2/2
)
g = 9.8 m/s^2
t = 42.4s
y = (9.8 (42.4*42.4)) / 2
y = 8,809.024m
<span>ripple factor can be reduced by increasing the value of the load resistor (which means reducing the load of the circuit)</span>
Answer:
the runner's average kinetic energy during the run is 476.96 J.
Explanation:
Given;
mass of the runner, m = 85 kg
distance covered by the runner, d = 42.2 km = 42,200 m
time to complete the race, t = 3 hours 30 mins = (3 x 3600s) + (30 x 60s)
= 12,600 s
The speed of the runner, v = d/t
v = 42,200 / 12,600
v = 3.35 m/s
The runner's average kinetic energy during the run is calculated as;
K.E = ¹/₂mv²
K.E = ¹/₂ × 85 × (3.35)²
K.E = 476.96 J
Therefore, the runner's average kinetic energy during the run is 476.96 J.