Answer:
1. Osteoporosis
2. Dehydration
3. Atherosclerosis
4. Aerobic exercise
5. Heart disease, obesity, diabetes and high blood pressure
6. Coronary heart disease, colorectal cancer, diabetes
Explanation:
1. Osteoporosis is the condition of the bones when they become easily fractured and less dense, such that injuries to the bones are likely to cause disability or pain
2. The bod becomes dehydrated in the event that there is insufficient water for proper functioning of the organs due to the loss of more water than the water that is taken in or absorbed.
3. Atherosclerosis is the building of plaque on the inside and outside of the walls of the arteries by cholesterol, fat, and other compounds in the blood often being taken as a problem or undesirable condition of the heart.
4. Processed foods are those that contain chemicals (that give them a good taste) in proportions that can cause illnesses
5. Taking large quantities of (red) meat such as burgers, or barbecued red meat, can lead to type 2 diabetes, cancers and stroke


Explanation:
Snell's law (also known as Snell–Descartes law and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.
Consider velocity to the right as positive.
First mass:
m₁ = 4.0 kg
v₁ = 2.0 m/s to the right
Second mass:
m₂ = 8.0 kg
v₂ = -3.0 m/s to the left
Total momentum of the system is
P = m₁v₁ + m₂v₂
= 4*2 + 8*(-3)
= -16 (kg-m)/s
Let v (m/s) be the velocity of the center of mass of the 2-block system.
Because momentum of the system is preserved, therefore
(m₁+m₂)v= -16
(4+8 kg)*(v m/s) = -16 (kg-m)/s
v = -1.333 m/s
Answer:
The center of mass is moving at 1.33 m/s to the left.
Impulse = (force) x (length of time the force lasts)
I see where you doodled (60)(40) over on the side, and you'll be delighted
to know that you're on the right track !
Here's the mind-blower, which I'll bet you never thought of:
On a force-time graph, impulse (also change in momentum)
is just the <em>area that's added under the graph during some time</em> !
From zero to 60, the impulse is just the area of that right triangle
under the graph. The base of the triangle is 60 seconds. The
height of the triangle is 40N . The area of the triangle is not
the whole (base x height), but only <em><u>1/2 </u></em>(base x height).
1/2 (base x height) = 1/2 (60s x 40N) = <u>1,200 newton-seconds</u>
<u>That's</u> the impulse during the first 60 seconds. It's also the change in
the car's momentum during the first 60 seconds.
Momentum = (mass) x (speed)
If the car wasn't moving at all when the graph began, then its momentum is 1,200 newton-sec after 60 seconds. Through the convenience of the SI system of units, 1,200 newton-sec is exactly the same thing as 1,200 kg-m/s . The car's mass is 3 kg, so after 60 sec, you can write
Momentum = M x V = (3 kg) x (speed) = 1,200 kg-m/s
and the car's speed falls right out of that.
From 60to 120 sec, the change in momentum is the added area of that
extra right triangle on top ... it's 60sec wide and only 20N high. Calculate
its area, that's the additional impulse in the 2nd minute, which is also the
increase in momentum, and that'll give you the change in speed.