When you heat a certain substance with a difference of temperature

the heat (energy) you must give to it is

where

is the specific heat of that substance (given in J/(g*Celsius))
In this case

Observation: the specific heat of a substance is given in J/(g*Celsius) or J/(g*Kelvin) because on the temperature scale a
difference of 1 degree Celsius = 1 degree Kelvin
Answer:
All of the above are true.
Explanation:
(a). true
whenever charge particle move back and froth from its mean position then it will produce oscillating electric and magnetic fields, . so an em wave can be obtain by accelerating charge
(b). true
the electric field and the magnetic field have vibrations in the perpendicular direction along the motion of the wave so electromagnetic wave is a transverse wave. therefore, the EM wave is a Transverse wave
(c) true .
The Electromagnetic wave consists of the two mutually perpendicular electric and magnetic fields and also both fields are perpendicular to the direction of propagation of the wave.
(d) true .
An electromagnetic wave carry energy through vacuum with a speed of
so , all of the above are true.
this process is called parellelogram method of resolving vectors.
Answer:
We experience interference while listening to the radio. A radio station works by sending and receiving radio waves. Since the radio waves are being interfered with other waves which must have a wave nature.
The interference is the net result of two individual waves. It can be constructive or destructive interference and is the property of waves and not particles.
This interference is an example of electromagnetic radiation. Thus we experience wave behavior of electromagnetic radiation in our daily communications.
Answer:
That is, mechanical waves cannot travel through a vacuum. This feature of mechanical waves is often demonstrated in a Physics class. A ringing bell is placed in a jar and air inside the jar is evacuated. Once air is removed from the jar, the sound of the ringing bell can no longer be heard.