For #5 It's helpful to draw a free body diagram so you know which way the forces are acting on the block.
the weight mg is acting downwards, and you need to find the vertical and horizontal components of mg using sin and cosine. so do 15x9.8xsin40 which is the force. Assuming no friction, this is the only force acting on the block, as the forces on the vertical plane cancel out i.e the normal force and weight of the block.
after, just do F=ma And since you know F and m, solve for a.
Answer:
Drilling into the seafloor off Mexico, scientists have extracted a unique geologic record of the single worst day in the history of life on Earth, when a city-sized asteroid smashed into the planet 65 million years ago, wiping out the dinosaurs and three-quarters of all other life.
Their analysis of these new rock samples from the Chicxulub crater, made public Monday, reveals a parfait of debris deposited in layers almost minute-by-minute at the heart of the impact during the first day of a global catastrophe. It records traces of the explosive melting, massive earthquakes, tsunamis, landslides and wildfires as the immense asteroid blasted a hole 100 miles wide and 12 miles deep, the scientists said.
Mass m = 68 kg
center of gravity from his palms x = 0.7 m
center of gravity from his feet x ' = 1 m
forces exerted by the floor on his palms and feet are F and F ' respectively.
with respect to palms :---------------------
( F*0 ) - (W * x ) + [ F ' * (x+x') ] = 0
-mg*0.7 + F ' * 1.7 = 0 where W = weight = mg
F ' * 1.7 = mg * 0.7
F ' = mg * 0.7 / 1.7
= 68 *9.8 * ( 0.7 / 1.7 )
= 274.4 N
with respect to feet :--------------------
( F ' * 0 ) -( W* x ' ) + [F * ( x + x') ] = 0
-mg*1 + [ F * 1.7 ]= 0
F = mg / 1.7
= 392 N
Answer:
The weight of the body, W = 793.8 m/s²
Explanation:
Given,
The volume of the body, v = 45,000 cm³
The density of the body, ρ = 1.8 g/cm³
The mass of the body is given by the formula,
m = ρ x v
= 1.8 g/cm³ x 45,000 cm³
= 81,000 g
Hence, the mass of the body is m = 81 kg
The weight of the body,
W = m x g
= 81 kg x 9.8 m/s²
= 793.8 m/s²
Hence, the weight of the body, W = 793.8 m/s²