Answer:
Explanation:
We shall apply concept of Doppler's effect of apparent frequency to this problem . Here observer is moving sometimes towards and sometimes away from the source . When observer moves towards the source , apparent frequency is more than real frequency and when the observer moves away from the source , apparent frequency is less than real frequency . The apparent frequency depends upon velocity of observer . The formula for apparent frequency when observer is going away is as follows .
f = f₀ ( V - v₀ ) / V , f is apparent , f₀ is real frequency , V is velocity of sound and v is velocity of observer .
f will be lowest when v₀ is highest .
velocity of observer is highest when he is at the equilibrium position or at middle point .
So apparent frequency is lowest when observer is at the middle point and going away from the source while swinging to and from before the source of sound .
Answer:
F = 196 N
Explanation:
For this exercise we will use Newton's second law, we define a reference system with the x axis in the direction of movement of the stones and the y axis vertically
Y axis
N- W = 0
N = mg
X axis
F -fr = ma
In this case, they ask us for the force to keep moving, so the stones go at constant speed, which implies that the acceleration is zero.
F- fr = 0
F = fr
the friction force has the equation
fr = μ N
fr = μ mg
we substitute
F = μ mg
let's calculate
F = 0.80 9.8 25
F = 196 N
<span>The 2nd truck was overloaded with a load of 16833 kg instead of the permissible load of 8000 kg.
The key here is the conservation of momentum.
For the first truck, the momentum is
0(5100 + 4300)
The second truck has a starting momentum of
60(5100 + x)
And finally, after the collision, the momentum of the whole system is
42(5100 + 4300 + 5100 + x)
So let's set the equations for before and after the collision equal to each other.
0(5100 + 4300) + 60(5100 + x) = 42(5100 + 4300 + 5100 + x)
And solve for x, first by adding the constant terms
0(5100 + 4300) + 60(5100 + x) = 42(14500 + x)
Getting rid of the zero term
60(5100 + x) = 42(14500 + x)
Distribute the 60 and the 42.
60*5100 + 60x = 42*14500 + 42x
306000 + 60x = 609000 + 42x
Subtract 42x from both sides
306000 + 18x = 609000
Subtract 306000 from both sides
18x = 303000
And divide both sides by 18
x = 16833.33
So we have the 2nd truck with a load of 16833.33 kg, which is well over it's maximum permissible load of 8000 kg. Let's verify the results by plugging that mass into the before and after collision momentums.
60(5100 + 16833.33) = 60(21933.33) = 1316000
42(5100 + 4300 + 5100 + 16833.33) = 42(31333.33) = 1316000
They match. The 2nd truck was definitely over loaded.</span>
Answer:
v = 120 m/s
Explanation:
We are given;
earth's radius; r = 6.37 × 10^(6) m
Angular speed; ω = 2π/(24 × 3600) = 7.27 × 10^(-5) rad/s
Now, we want to find the speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator.
The angle will be;
θ = ¾ × 90
θ = 67.5
¾ is multiplied by 90° because the angular distance from the pole is 90 degrees.
The speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator will be:
v = r(cos θ) × ω
v = 6.37 × 10^(6) × cos 67.5 × 7.27 × 10^(-5)
v = 117.22 m/s
Approximation to 2 sig. figures gives;
v = 120 m/s