Answer:
150156.25 Ω
Explanation:
Resistance: This can be defined as the opposition to the flow of electric current in a circuit. The S.I unit of resistance is Ohm's (Ω)
The expression for resistance is given as
P = V²/R................ equation 1
Where P = power, V = Voltage, R = Resistance.
Making R the subject of the equation,
R = V²/P.................. Equation 2
Given: V = 115 V , P = 0.16 W.
Substitute into equation 2
R = 155²/0.16
R = 150156.25 Ω
Hence,
The resistance = 150156.25 Ω
Answer:
C = 771.35 J/kg°C
Explanation:
Here, e consider the conservation of energy equation. The conservation of energy principle states that:
Heat Given by Metal Piece = Heat Absorbed by Water + Heat Absorbed by Container
Since,
Heat Given or Absorbed by a material = m C ΔT
Therefore,
m₁CΔT₁ = m₂CΔT₂ + m₃C₃ΔT₃
where,
m₁ = Mass of Metal Piece = 2.3 kg
C = Specific Heat of Metal = ?
ΔT₁ = Change in temperature of metal piece = 165°C - 18°C = 147°C
m₂ = Mass of Metal Container = 3.8 kg
ΔT₂ = Change in temperature of metal piece = 18°C - 15°C = 3°C
m₃ = Mass of Water = 20 kg
C₃ = Specific Heat of Water = 4200 J/kg°C
ΔT₃ = Change in temperature of water = 18°C - 15°C = 3°C
Therefore,
(2.3 kg)(C)(147°C) = (3.8 kg)(C)(3°C) + (20 kg)(4186 J/kg°C)(3°C)
C[(2.3 kg)(147°C) - (3.8 kg)(3°C)] = 252000 J
C = 252000 J/326.7 kg°C
<u>C = 771.35 J/kg°C</u>
The molecules of ice stick together in the process of cohesion. They are tightly packed so there isn't much room to move. Liquid water is a looser hold. The molecules can go past one another, and they will take the shape of whatever container they occupy. Water vapor is loosely contained, and it will will fill whatever container it is kept in, and it will take its shape, too.
Being made mostly of gas is NOT a
characteristic of an inner planet. The correct answer between all the choices
given is the last choice or letter D. I am hoping that this answer has
satisfied your query and it will be able to help you in your endeavor, and if
you would like, feel free to ask another question.
Answer:
The input force that you use on an inclined plane is the force with which you push or pull an object. The output force is the force that you would need to lift the object without the inclined plane. This force is equal to the weight of the object.
Explanation: