Unfortunately, you failed to include the table 1 from which the molar heat capacity of aluminum could have been obtained. However, as a general rule, the heat needed to raise the temperature of a certain substance by certain degrees is calculated through the equation,
H = mcpdT
where H is heat, m is mass, cp is specific heat capacity, and dT is change in temperature. From a reliable source, cp for aluminum is equal to 0.215 cal/g°C. Substituting this to the equation,
H = (260.5 g)(0.215 cal/g°C)(125°C - 0)
H = 7000.94 cal
Answer:
44.8 L of O2 will react (option D)
Explanation:
Step 1: Data given
Number of moles of SO2 = 4.00 moles
STP = Pressure = 1 atm and temperature = 273 K
Step 2: The balanced equation
2 SO2(g) + O2(g) → 2 SO3(g)
Step 3: Calculate moles of O2
For 2 moles SO2, we need 1 mol O2 to produce 2 moles SO3
For 4.00 moles SO2 we need 4.00 / 2 = 2.00 moles O2
Step 4: Calculate volume of O2
For 1 mol we have a volume of 22.4 L
V = (n*R*T)/ p
V = (2.00 * 0.08206 * 273)/p
V = 44.8 L
For 2.00 moles we have a volume of 2*22.4 = 44.8 L
44.8 L of O2 will react (option D)