Answer:violet
Explanation:Even though violet waves have the shortest wavelength of the visible light spectrum, they carry the most energy.
Answer : The final concentration of
is, 2.9 M
Explanation :
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time passed by the sample = 3.5 min
a = initial concentration of the reactant = 3.0 M
a - x = concentration left after decay process = ?
Now put all the given values in above equation, we get


Thus, the final concentration of
is, 2.9 M
Plasma membrane is the answer
Specificity. It’s really loose to say that something is fast, since speed can be scalarly linked and relative. I could say that both a car on the highway is fast, but so is the speed of light. The actual speed of something helps to do away with the arbitrary nature of using “fast” and “slow”; however, we’re still at step one of the person who is receiving the information is unfamiliar with the scale that the actual speed is defined in.
Answer:
B.3/5p
Explanation:
For this question, we have to remember <u>"Dalton's Law of Partial Pressures"</u>. This law says that the pressure of the mixture would be equal to the sum of the partial pressure of each gas.
Additionally, we have a <em>proportional relationship between moles and pressure</em>. In other words, more moles indicate more pressure and vice-versa.

Where:
=Partial pressure
=Total pressure
=mole fraction
With this in mind, we can work with the moles of each compound if we want to analyze the pressure. With the molar mass of each compound we can calculate the moles:
<u>moles of hydrogen gas</u>
The molar mass of hydrogen gas (
) is 2 g/mol, so:

<u>moles of oxygen gas</u>
The molar mass of oxygen gas (
) is 32 g/mol, so:

Now, total moles are:
Total moles = 2 + 3 = 5
With this value, we can write the partial pressure expression for each gas:


So, the answer would be <u>3/5P</u>.
I hope it helps!