Answer:
0.289J of heat are added
Explanation:
We can relate the change in heat of a substance with its increasing in temperature using the equation:
q = m*ΔT*S
<em>Where Q is change in heat</em>
<em>m is mass of substance (In this case, 0.0948g of water)</em>
<em>ΔT = 0.728°C</em>
<em>S is specific heat (For water, 4.184J/g°C)</em>
Replacing:
q = 0.0948g*0.728°C*4.184J/g°C
q = 0.289J of heat are added
The given question is incomplete. The complete question is as follows.
Which of the following best helps explain why an increase in temperature increases the rate of a chemical reaction?
(a) at higher temperatures, high-energy collisions happen less frequently.
(b) at low temperatures, low-energy collisions happen more frequently.
(c) at higher temperatures, less-energy collisions happen less frequently.
(d) at higher temperatures, high-energy collisions happen more frequently
Explanation:
When we increase the temperature of a chemical reaction then molecules of the reactant species tend to gain kinetic energy. As a result, they come into motion which leads to more number of collisions within the molecules.
Therefore, chemical reaction will take less amount of time in order to reach its end point. This means that there will occur an increase in rate of reaction.
Thus, we can conclude that the statement at higher temperatures, high-energy collisions happen more frequently, best explains why an increase in temperature increases the rate of a chemical reaction.
<span>he specific heat capacity of liquid water is 4.186 J/gm K.</span>
Eh I can't comment
That's y
No-one knows that I enter this site
Only a cousin knows
Cz I've got a protective family lol
An acid has a pH <7. 7 is the pH of a neutral substance, like water, and substance with a pH >7 are considered basic or alkaline.