Newton's second law states that the resultant of the forces applied to an object is equal to the product between the object's mass and its acceleration:

where in our problem, m is the mass the (child+cart) and a is the acceleration of the system.
We are only concerned about what it happens on the horizontal axis, so there are two forces acting on the cart+child system: the force F of the man pushing it, and the frictional force

acting in the opposite direction. So Newton's second law can be rewritten as

or

since the frictional force is 15 N and we want to achieve an acceleration of

, we can substitute these values to find what is the force the man needs:
Hello!
Use <u>ohm law:</u>
I = V / R
Replacing:
I = 100 V / 20 O
I = 5 A
The current is <u>5 amperes.</u>
Answer:
The gravitational potential energy of the man
= mass of the man(m) × gravitational acceleration(g) × height (h)
80 Kg × 9.8 m/s^2 × 60 m
80 × 9.8 x 60 ( kg ×m^2/s^2)
47040 Joules (ans)
Hope it helps
Answer:a) The bullet will miss the monkey because the monkey falls down while the bullet speeds straight forward.
Explanation: The bullet keeps as it aim( the monkey) unless it is redirected by an external force that could redirect it. Hence, the bullet speeds straight forward.