Answer:
0.217 m/s
Explanation:
The protons in the beam passes undeflected when the electric force is equal to the magnetic force:
qE = qvB
where
q is the proton's charge
E is the magnitude of the electric field
v is the speed of the protons
B is the magnitude of the magnetic field
Re-arranging the equation,

And by substituting
E = 0.5 N/C
B = 2.3 T
We find

Answer:
25N
Explanation:
Assuming the lab is on earth:
w = mg = 2.5 (9.81) = 25N
Answer:
Explanation:
a. The equation of Lorentz transformations is given by:
x = γ(x' + ut')
x' and t' are the position and time in the moving system of reference, and u is the speed of the space ship. x is related to the observer reference.
x' = 0
t' = 5.00 s
u =0.800 c,
c is the speed of light = 3×10⁸ m/s
Then,
γ = 1 / √ (1 - (u/c)²)
γ = 1 / √ (1 - (0.8c/c)²)
γ = 1 / √ (1 - (0.8)²)
γ = 1 / √ (1 - 0.64)
γ = 1 / √0.36
γ = 1 / 0.6
γ = 1.67
Therefore, x = γ(x' + ut')
x = 1.67(0 + 0.8c×5)
x = 1.67 × (0+4c)
x = 1.67 × 4c
x = 1.67 × 4 × 3×10⁸
x = 2.004 × 10^9 m
x ≈ 2 × 10^9 m
Now, to find t we apply the same analysis:
but as x'=0 we just have:
t = γ(t' + ux'/c²)
t = γ•t'
t = 1.67 × 5
t = 8.35 seconds
b. Mavis reads 5 s on her watch which is the proper time.
Stanley measured the events at a time interval longer than ∆to by γ,
such that
∆t = γ ∆to = (5/3)(5) = 25/3 = 8.3 sec which is the same as part (b)
c. According to Stanley,
dist = u ∆t = 0.8c (8.3) = 2 x 10^9 m
which is the same as in part (a)
Answer:
5 m/s
Explanation:
Here we can see there is no external force acted on a two masses when we consider the motion. If there is no external forces then momentum is conserved.
Initial momentum = Final momentum
0.5 × 10 = 1 × V
V = 5 m/s
<span> </span>For any prism-shaped geometry, the volume
(V) is assumed by the product of cross-sectional area (A) and height (h).
<span> V = Ah </span>
<span>
Distinguishing with respect to time gives the
relationship between the rates.
dV/dt = A*dh/dt</span>
<span> in the meantime the area is not altering </span>
<span>
dV/dt = π*(1 ft)^2*(-0.5 ft/min) </span>
<span>
dV/dt = -π/2 ft^3/min ≈ -1.571 ft^3/min
Water is draining from the tank at the rate of π/2
ft^3/min.</span>