Answer:
A bear normally has a short, thick neck, a rounded head, a pointed muzzle, short ears, and small eyes. Some species have round faces. Bears have poor eyesight, and most have only fair hearing.
Explanation:
Modern Bears are characterized with large body and stocky legs, a long snout, shaggy hair, plantigrade paws with five non-retractile claws and a short tail.
Grizzly bears (Ursus arctos horribilis) have concave faces, a distinctive hump on their shoulders, and long claws about two to four inches long. Both the hump and the claws are traits associated with a grizzly bear's exceptional digging ability. Grizzlies are often dark brown, but can vary from blonde to nearly black.
The brown bear has a slight hump above its shoulder, round ears, a long snout and big paws with long, curved claws that it uses for digging. Unlike the black bear, it can't climb trees. It can weigh between 350-1,500 pounds. When standing on its hind legs it can be up to 5 feet tall.
Hope this helps :)
(I didn't know which type of bear so i did brown bear and grizzly bear)
Answer:
Answer is A) Fermi
Explanation:
Fermi is the expressive unit for nuclear sizes. Fermi = 10^-15 meter.
Answer:
A = m³/s³ = [L]³/[T]³ = [L³T⁻³]
B = m³s = [L³T]
Explanation:
We have the equation:
V = At³ + B/t
where, the dimensions of each variable are as follows:
V = m³ = [L]³
t = s = [T]
substituting these in equation, we get:
m³ = A(s)³ + B/s
for the homogeneity of the equation:
A(s)³ = m³
<u>A = m³/s³ = [L]³/[T]³ = [L³T⁻³]</u>
Also,
B/s = m³
<u>B = m³s = [L³T]</u>
Answer:
That's simply because any electromagnetic wave longer than a microwave is called a radio wave. Microwaves: Obviously used for cooking in microwave ovens, but also for transmitting information in radar equipment. Microwaves are like short-wavelength radio waves. Typical size: 15cm (the length of a pencil).
The car will take 300 m before it stops due to applying break.
<h3>What's the relation between initial velocity, final velocity, acceleration and distance?</h3>
- As per Newton's equation of motion, V² - U² = 2aS
- V= final velocity velocity of the object, U = initial velocity velocity of the object, a= acceleration, S = distance covered by the object
- Here, U = 60 ft/sec, V = 0 m/s, a= -6 ft/sec²
- So, 0² - 60² = 2×6× S
=> -3600 = -12S
=> S = 3600/12 = 300 m
Thus, we can conclude that the distance covered by the car is 300 m before it stopped.
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: A car is being driven at a rate of 60 ft/sec when the brakes are applied. The car decelerates at a constant rate of 6 ft/sec². How long will it take before the car stops?
Learn more about the Newton's equation of motion here:
brainly.com/question/8898885
#SPJ1