Let's cut through the weeds and the trash
and get down to the real situation:
A stone is tossed straight up at 5.89 m/s .
Ignore air resistance.
Gravity slows down the speed of any rising object by 9.8 m/s every second.
So the stone (aka Billy-Bob-Joe) continues to rise for
(5.89 m/s / 9.8 m/s²) = 0.6 seconds.
At that timer, he has run out of upward gas. He is at the top
of his rise, he stops rising, and begins to fall.
His average speed on the way up is (1/2) (5.89 + 0) = 2.945 m/s .
Moving for 0.6 seconds at an average speed of 2.945 m/s,
he topped out at
(2.945 m/s) (0.6 s) = 1.767 meters above the trampoline.
With no other forces other than gravity acting on him, it takes him
the same time to come down from the peak as it took to rise to it.
(0.6 sec up) + (0.6 sec down) = 1.2 seconds until he hits rubber again.
Answer:
Because the Earth has so much gravity, it can hold water, land, and life in it's atmosphere.
(Not sure what beaker you are talking about, so sorry) But I don't think the moon's gravity would have an effect on a beaker of water because the Earth's gravity is much more than the moon's.
I think you would be able to feel a little bit of Earth's gravity on the moon because the Earth's gravity pulled the moon into orbit, therefore, gravity on Earth my have some effect on the moon.
hope this helps!
1.A) 4.9 m
AL2006 Ace
The instant it was dropped, the ball had zero speed.
After falling for 1 second, its speed was 9.8 m/s straight down (gravity).
Its AVERAGE speed for that 1 second was (1/2) (0 + 9.8) = 4.9 m/s.
Falling for 1 second at an average speed of 4.9 m/s, is covered 4.9 meters.
ANYTHING you drop does that, if air resistance doesn't hold it back.
Read more on Brainly.com - brainly.com/question/11776597#readmore
2 idk sorry
Answer:
denoting, relating to, or operated by a liquid moving in a confined space under pressure.