The voltage across an inductor ' L ' is
V = L · dI/dt .
I(t) = I(max) sin(ωt)
dI/dt = I(max) ω cos(ωt)
V = L · ω · I(max) cos(ωt)
L = 1.34 x 10⁻² H
ω = 2π · 60 = 377 /sec
I(max) = 4.80 A
V = L · ω · I(max) cos(ωt)
V = (1.34 x 10⁻² H) · (377 / sec) · (4.8 A) · cos(377 t)
<em>V = 24.25 cos(377 t)</em>
V is an AC voltage with peak value of 24.25 volts and frequency = 60 Hz.
Answer:
0.25 m
Explanation:
Electromagnetic waves consist of oscillations of the electric and the magnetic field, oscillating in a plane perpendicular to the direction of motion the wave.
All electromagnetic waves travel in a vacuum always at the same speed, the speed of light, whose value is:
Microwave is an example of electromagnetic waves.
The relationship between wavelength and frequency for an electromagnetic wave is:

where
is the wavelength
is the speed of light
f is the frequency
For the microwave in this problem,

So its wavelength is

Resultant force= (2*6^2)^(1/2)
=8.5m/s
answer is B.
IT IS EASIER TO CLIMB A SLANTED SLOPE
Kinetic, potential because, at the top of the ramp it’s going faster. Potential at the bottom of the ramp is potential because, it’s not doing any motion.