Answer:
115.2 °C since melting point is an intensive property
Step-by-step explanation:
The melting point of a substance does not depend on how much you have.
For example, the melting point of water is 0 °C, whether it is an ice cube from the refrigerator or in the frozen pond outside.
The freezing point of a substance is an <em>intensive property</em>.
Thus, the melting point of 100 g of sulfur is 115.2 °C because melting point in an intensive property.
43.8 has 3 significant figures and 1 decimal.
<h3 /><h3>What are significant figures?</h3>
The term significant figures refer to the number of important single digits (0 through 9 inclusive) in the coefficient of an expression in scientific notation.
All zeros that occur between any two non-zero digits are significant. For example, 108.0097 contains seven significant digits. All zeros that are on the right of a decimal point and also to the left of a non-zero digit are never significant. For example, 0.00798 contained three significant digits.
Hence, 43.8 has 3 significant figures and 1 decimal.
Learn more about significant figures here:
brainly.com/question/14359464
#SPJ1
LiBr.
<h3>Explanation</h3>
Note that the group number in this answer refers to the new IUPAC group number, which ranges from 1 to 18. Counts from the left. Start with the first two column (group 1 and 2), go on to the transition elements (Sc, Ti, etc. in group 3 through 12), and continue with the nonmetals (group 13 through 18).
Li is a group 1 metal. As a metal, it tends to form positive ions ("cations"). Metals in group 1 and 2 are <em>main group</em> metals. The charge on main group metal ions tends to be the same as the group number of the metal. Li is in group 1. The charge on an Li ion will be +1. Formula of the Li ion will be
.
Br is a group 17 nonmetal. As a nonmetal, it tends to form negative ions ("anions"). The charge on nonmetal ions excepting for H tends to equal the group number of the nonmetal minus 18. Br is in group 17. The charge on a Br ion will be 17 - 18 = -1. Formula of the Br ion will be 
All the ions in an ionic compound carry charge. However, some of the ions like
are positive. Others ions like
are negative. Charge on the two types of ions balance each other. As a result, the compound is <em>overall</em> neutral.
1 × (+1) + 1 × (-1) = 0. The positive charge on one
ion balances the negative charge on one
ion. The two ions would pair up at a 1:1 ratio.
The empirical formula for an ionic compound shows all the ions in the compound. Positive ions are written in front of negative ions.
is positive and
is negative. The formula shall also show the simplest ratio between the ions. For the compound between Li and Br, a 1:1 ratio will be the simplest. The "1" subscript in an empirical formula can be omitted. Hence the formula: LiBr.
We use the MO diagram for a homonuclear diatomic species (since C and N are neighbours, we treat them as the "same").
The first two electrons contribute to bonding. The next two are anti-bonding.
The next six contribute to bonding, and the following six are anti-bonding.
So, if we start with CN+, which has 4+5-1 (8) valence electrons, we note that the first two electrons contribute to bonding, while the next two cancel this out; the next four contribute to bonding, so the bond order is 4/2 = 2.
If we add one more electron to get CN, there are now 5 bonding electrons, giving bond order 5/2=2.5.
Adding one more to give CN- would give the bond order 6/2 = 3. (If we added more electrons, each one would lower the bond order.)
Given a series of molecules with identical skeletal structures, the one with the highest bond order has the highest bond energy:
CN+ < CN < CN-
Lewis structures will verify that CN- has a triple bond, but they do not work particularly well for CN+ and CN.
learn more about bond orders at
brainly.com/question/9713842
#SPJ1
Based on Le Chatelier's principle, if a system at equilibrium is disturbed by changes in the temperature, pressure or concentration, then the equilibrium will shift in a direction to undo the effect of the induced change.
The given reaction is endothermic i.e, heat is supplied:
CH4(g) + H2O (g) + heat ↔ 3H2(g) + CO(g)
a) When the temperature is lowered, heat is being removed from the system. The reaction will move in a direction to produce more heat i.e. to the left.
Hence, the pressure of CH4 will increase and equilibrium will shift to the left
b) When the temperature is raised, heat is being added to the system. The reaction will move in a direction to consume the added heat i.e. to the right.
Hence, the pressure of CO will increase and equilibrium will shift to the right