Answer: MR²
is the the moment of inertia of a hoop of radius R and mass M with respect to an axis perpendicular to the hoop and passing through its center
Explanation:
Since in the hoop , all mass elements are situated at the same distance from the centre , the following expression for the moment of inertia can be written as follows.
I = ∫ r² dm
= R²∫ dm
MR²
where M is total mass and R is radius of the hoop .
Electrical generator which operates using a magnetic field. It is the beginning of modern dynamos.
I'm assuming the question is what is the robin's speed relative to to the ground...
Create an equation that describes its relative motion.
rVg = rVa + aVg
Substitute values.
rVg = 12 m/s [N] + 6.8 m/s [E]
Use vector addition.
| rVg | = √ | rVa |² + | aVg |²
| rVg | = √ 144 m²/s² + 46.24 m²/s²
| rVg | = √ 19<u>0</u>.24 m²/s²
| rVg | = 1<u>3</u>.78 m/s
Find direction.
tanФ = aVg / rVa
tanФ = 6.8 m/s / 12 m/s
Ф = 29°
Therefore, the velocity of the robin relative to the ground is 14 m/s [N29°E]