1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dovator [93]
3 years ago
5

A model airplane of mass 0.6 kg is attached to a horizontal string and flies in a horizontal circle of radius 6 m, making 1.6 re

volutions every 5 s. (The weight of the plane is balanced by the upward “lift” force of the air on the wings of the plane.) The accelaration due to the gravity is 9.81 m/s2 . Find the speed of the plane. Answer in units of m/s.
Physics
1 answer:
nikitadnepr [17]3 years ago
5 0

Answer:

speed= 12.15\frac{m}{s}

Explanation:

In this question we have given

mass of airplane=.6 Kg

Radius of horizontal circle,r=6m

Time taken to complete 1.6 revolution=5s

Therefore time taken to complete 1 revolution, t=\frac{5}{1.6}

t=3.1 s

We have to find the speed of airplane

We will first find the distance covered by airplane in tracing one circle which is equal to circumference of circle

We know that

Circumference,d = 2 \pi \times r

or d=2\times 3.14 \times 6

d=37.68 m

We know that speed=\frac{d}{t}............(1)

Put value of d and t in equation 1

speed=\frac{37.68}{3.1}

speed= 12.15\frac{m}{s}

You might be interested in
A mouse runs along a baseboard in your house. The mouse's position as a function of time is given by x(t)=pt 2+qt, with p = 0.36
Semmy [17]

Answer: the average speed of the rat from the information given above is 0.7m/s

Explanation:

position is given as

x(t) = pt² + qt

finding the diffencial of x(t) with respect to t, we have

d(x(t))/dt = 2pt + q

we substitute the p = 0.36m/s² and q= -1.10 m/s

d(x(t))/dt = 2(0.36)t + (-1.10)

so, at t= 1s

d(x(t))/dt = 2*(0.36)*1 - 1.1 = 0.72 - 1.1 = -0.38m/s

at t= 4s

d(x(t))/dt = 2*(0.36)*4 - 1.10 = 2.88 - 1.10 = 1.78 m/s

To find the average speed,

average speed = (V1 + V2)/ 2

average speed = (1.78 + (-0.38))/2 = 0.7m/s

5 0
3 years ago
Two thin concentric spherical shells of radii r1 and r2 (r1 < r2) contain uniform surface charge densities V1 and V2, respect
Lyrx [107]

Answer:

Answer is explained in the explanation section below.

Explanation:

Solution:

We know that the Electric field inside the thin hollow shell is zero, if there is no charge inside it.

So,

a)  0 < r < r1 :

We know that the Electric field inside the thin hollow shell is zero, if there is no charge inside it.

Hence, E = 0 for r < r1

b)  r1 < r < r2:

Electric field =?

Let, us consider the Gaussian Surface,

E x 4 \pi r^{2}  = \frac{Q1}{E_{0} }

So,

Rearranging the above equation to get Electric field, we will get:

E = \frac{Q1}{E_{0} . 4 \pi. r^{2}   }

Multiply and divide by r1^{2}

E = \frac{Q1}{E_{0} . 4 \pi. r^{2}   } x \frac{r1^{2} }{r1^{2} }

Rearranging the above equation, we will get Electric Field for r1 < r < r2:

E= (σ1 x r1^{2}) /(E_{0} x r^{2})

c) r > r2 :

Electric Field = ?

E x 4 \pi r^{2}  = \frac{Q1 + Q2}{E_{0} }

Rearranging the above equation for E:

E = \frac{Q1+Q2}{E_{0} . 4 \pi. r^{2}   }

E = \frac{Q1}{E_{0} . 4 \pi. r^{2}   } + \frac{Q2}{E_{0} . 4 \pi. r^{2}   }

As we know from above, that:

\frac{Q1}{E_{0} . 4 \pi. r^{2}   } =  (σ1 x r1^{2}) /(E_{0} x r^{2})

Then, Similarly,

\frac{Q2}{E_{0} . 4 \pi. r^{2}   } = (σ2 x r2^{2}) /(E_{0} x r^{2})

So,

E = \frac{Q1}{E_{0} . 4 \pi. r^{2}   } + \frac{Q2}{E_{0} . 4 \pi. r^{2}   }

Replacing the above equations to get E:

E = (σ1 x r1^{2}) /(E_{0} x r^{2}) + (σ2 x r2^{2}) /(E_{0} x r^{2})

Now, for

d) Under what conditions,  E = 0, for r > r2?

For r > r2, E =0 if

σ1 x r1^{2} = - σ2 x r2^{2}

4 0
3 years ago
What is potential energy
valkas [14]

Answer:

Potential energy is energy that is stored – or conserved - in an object or substance. This stored energy is based on the position, arrangement or state of the object or substance. You can think of it as energy that has the 'potential' to do work.

6 0
3 years ago
Read 2 more answers
To understand the formula representing a traveling electromagnetic wave.
Mumz [18]

Answer:

Explanation:

Time period is the reciprocal of frequency

T = 1/F

F = 1/T

but angular frequency w = 2πF

F = w/2π

The detailed steps is as shown in the attached file

8 0
3 years ago
A 8.8 cm diameter circular loop of wire is in a 1.04 T magnetic field. The loop is removed from the field in 0.30 s . Assume tha
denis23 [38]

Answer:

0.021 V

Explanation:

The average induced emf (E) can be calculated usgin the Faraday's Law:

E = - \frac{N*\Delta \phi}{\Delta t}  

<u>Where:</u>

<em>N = is the number of turns = 1   </em>

<em>ΔΦ = ΔB*A                                            </em>

<em>Δt = is the time = 0.3 s   </em>

<em>A = is the loop of wire area = πr² = πd²/4 </em>

<em>ΔB: is the magnetic field = (0 - 1.04) T                     </em>

Hence the average induced emf is:

E = - \frac{\Delta B*A}{\Delta t} = - \frac{(0- 1.04 T) \pi (0.088 m)^{2}}{4*0.3 s} = 0.021 V                      

Therefore, the average induced emf is 0.021 V.

I hope it helps you!

8 0
4 years ago
Other questions:
  • PLEASE HELP ME
    8·1 answer
  • What is the formula of conservation of linear momentum
    9·1 answer
  • 6. A boat with speed of 1.20 km/h relative to the water is heading for a dock 2.29
    11·1 answer
  • The mass of a golf ball is 45.9 g . if it leaves the tee with a speed of 62.0 m/s , what is its corresponding wavelength?
    5·1 answer
  • You attach a 1.70 kg block to a horizontal spring that is fixed at one end. You pull the block until the spring is stretched by
    8·1 answer
  • The flow of air from an ocean or lake to the land is called a ___________________________.
    6·1 answer
  • You have an electric field with an intensity of 18 N/C at a
    11·1 answer
  • On which planet would you weigh less?
    13·2 answers
  • State Newton's second law of motion in terms of momentum<br>​
    7·1 answer
  • two identical springs of spring constant 7580 N/m are attached to a block of mass 0.245 kg. What is the frequency of oscillation
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!