Answer:
The woman's distance from the right end is 1.6m = (8-6.4)m.
The principles of moments about a point or axis running through a point and summation of forces have been used to calculate the required variable.
Principle of moments: the sun of clockwise moments must be equal to the sun of anticlockwise moments.
Also the sun of upward forces must be equal to the sun of downward forces.
Theses are the conditions for static equilibrium.
Explanation:
The step by step solution can be found in the attachment below.
Thank you for reading this solution and I hope it is helpful to you.
Answer:
I think it’s 6.8 m/s2
Explanation:
Please give me brainlist if the answer is right.
Answer:v=41.23 m/s
Explanation:
Given
mass of heavy object 
distance of
from the axle 
mass of rock 
Length of rod 
distance of
from axle 
Net torque acting is




Work done by
is converted to rock kinetic Energy
thus

Where 





Answer:
4
Explanation:
The weight of the rock is W = mg = (80 kg) (10 m/s²) = 800 N.
The mechanical advantage is therefore 800 N / 200 N = 4.