The actual answer is 165 miles, but using significant figure rules the answer is 200. This is because the sig fig rules are as follows ...
<span>1. Non-zero digits are always significant.
2. Any zeros between two significant digits are significant.
<span>3. A final zero or trailing zeros in the decimal portion ONLY are significant.
</span></span>
So the zeroes in a number like 20 or 23,000 are NOT significant. When you add numbers you must find the addend with the lowest amount of significant figures and round the answer to that. In this case most of the addends only have one sig fig, so you round 165 to 200 to make it only have one sig fig.
We look at the criteria to select a car.
If we are not too rich, we have to bother about fuel efficiency. The mileage in terms
of km per liter or miles per gallon etc.
engine power - whether it is good enough over a slope (steep) that I may encounter
frequently with my family members.
internal space / total external size : or internal space / total price:
We find these numbers. after all , we make use of the internal space on seats.
we have to know its proportion in the total volume of the car.
the axle turning capability, wheel turning ability :
see the minimum radius and span required to turn a car in a U turn.
we have to bother about its pollution, emission level.
height / width ratio, which is important for the balance of the car.
==================================
If we are looking at the economic point of view
monthly benefit/savings of using the car,converted into currency - Loan EMI
Answer:
2697.75N/m
Explanation:
Step one
This problem bothers on energy stored in a spring.
Step two
Given data
Compression x= 2cm
To meter = 2/100= 0.02m
Mass m= 0.01kg
Height h= 5.5m
K=?
Let us assume g= 9.81m/s²
Step three
According to the principle of conservation of energy
We know that the the energy stored in a spring is
E= 1/2kx²
1/2kx²= mgh
Making k subject of formula we have
kx²= 2mgh
k= 2mgh/x²
k= (2*0.01*9.81*5.5)/0.02²
k= 1.0791/0.0004
k= 2697.75N/m
Hence the spring constant k is 2697.75N/m
Answer:
21 Hz, 43 Hz and 22 Hz
Explanation:
The computation of the beat frequencies that are generated by this discordant combination is as follows:
As we know that
beat frequencies = |f_1 - f_2|
So
For the first one
= |349 Hz - 370 Hz|
= 21 Hz
For the second one
= |349 Hz - 392 Hz|
= 43 Hz
And, for the third one
= |370 Hz - 392 Hz|
= 22 Hz