IMA = Ideal Mechanical Advantage
First class lever = > F1 * x2 = F2 * x1
Where F1 is the force applied to beat F2. The distance from F1 and the pivot is x1 and the distance from F2 and the pivot is x2
=> F1/F2 = x1 /x2
IMA = F1/F2 = x1/x2
Now you can see the effects of changing F1, F2, x1 and x2.
If you decrease the lengt X1 between the applied effort (F1) and the pivot, IMA decreases.
If you increase the length X1 between the applied effort (F1) and the pivot, IMA increases.
If you decrease the applied effort (F1) and increase the distance between it and the pivot (X1) the new IMA may incrase or decrase depending on the ratio of the changes.
If you decrease the applied effort (F1) and decrease the distance between it and the pivot (X1) IMA will decrease.
Answer: Increase the length between the applied effort and the pivot.
The correct answer to the question is 130.4 N.
CALCULATION;
The mass of the bullet is given as m = 28 gram = 0. 028 kg.
The initial velocity of the bullet u = 55 m/s
The final velocity of the bullet v = 18 m/s.
The distance covered by the bullet through the sand bag s = 29 cm.
= 0.29 m
Let the acceleration of the bullet is a .
From equation of kinematics, we know that-

⇒ 


The negative sign is used due to the fact that force is opposing in nature. Its velocity is decreasing with time.
From Newton's second law of motion, we know that net force on a body is equal to the product of mass with acceleration.
Mathematically F = ma.
Hence, the frictional force exerted on the bullet is calculated as -
F = m × a
= 0.028 × (-4656.897) N
= -130.4 N [ANS]
Here, N ( newton) stands for the unit of force.
Answer:
b.
Explanation:
-vesign shows the lens is <em><u>C</u></em><em><u>O</u></em><em><u>N</u></em><em><u>C</u></em><em><u>A</u></em><em><u>V</u></em><em><u>E</u></em>
<em><u>f</u></em><em><u>=</u></em>1/power
If an element has a charge of +1, there is 1 more proton than electrons.
A proton has a charge of +1
A neutron has a charge of 0
A electron has a charge of -1.
For there to be a charge of 0, there would be the same amount of charges for both proton and neutron. To get a charge of 1, you will need 1 more proton.
hope this helps