The velocity of B after elastic collision is 3.45m/s
This type of collision is an elastic collision and we can use a formula to solve this problem.
<h3>Elastic Collision</h3>

The data given are;
- m1 = 281kg
- u1 = 2.82m/s
- m2 = 209kg
- u2 = -1.72m/s
- v1 = ?
Let's substitute the values into the equation.

From the calculation above, the final velocity of the car B after elastic collision is 3.45m/s.
Learn more about elastic collision here;
brainly.com/question/7694106
Answer:
The disk will reach the bottom first.
Explanation:
As we know:
change in kinetic energy = change in potential energy
ΔK.E = -ΔP.E



For the disk:

For Hoop:

Hence
Velocity for the disk:

Velocity for the Hoop:

It can be calculated using Boyle's Law. A.
Answer:
The two rays, CY and DM are diverging rays and when extended behind the mirror, they appear to intersect each other at point M'. Therefore, the properties of the images formed here are formed behind the mirror, between the pole and principal focus (f), the images are diminished and are virtual and erect.
Explanation:
<h2>Spherical Mirrors</h2>
- There are two kinds of spherical mirrors, concave and convex.
- The focal point (F) of a concave mirror is the point at which a parallel beam of light is "focussed" after reflection in the mirror. ...
- The focal length (f) and radius of curvature (R) are defined in the diagram at the right.
<h3>hope it helps and thanks for following </h3><h2>please give brainliest </h2>