Answer:
- the electromagnetic spectrum is the range of electromagnetic radiation, organized by how much energy the radiation carries. there is an opposite relationship between wavelength, frequency, and energy. as the wavelength of a wave increases, the frequency and energy decrease, and vice versa.
- the order from longest wavelength (lowest energy) to shortest wavelength (highest energy) is as follows: radio waves, microwaves, infrared waves, visible light waves, ultraviolet waves, x-rays and gamma rays.
Explanation:
hope this helps!
Answer: 69.72 kg of cryolite will be produced.
Explanation:
The balanced chemical equation is:

To calculate the moles, we use the equation:

moles of
= 
moles of
= 
moles of
= 
As 1 mole of
reacts with 6 moles of 
166 moles of
reacts with =
moles of 
As 1 mole of
reacts with 12 moles of 
166 moles of
reacts with =
moles of 
Thus
is the limiting reagent.
As 1 mole of
produces = 2 moles of cryolite
166 moles of
reacts with =
moles of cryolite
Mass of cryolite
= 
Thus 69.72 kg of cryolite will be produced.
Answer:
0.55 atm
Explanation:
First of all, we need to calculate the number of moles corresponding to 1.00 g of carbon dioxide. This is given by

where
m = 1.00 g is the mass of the gas
Mm = 44.0 g/mol is the molar mass of the gas
Substituting,

Now we can find the pressure of the gas by using the ideal gas law:

where
p is the gas pressure
V = 1.00 L is the volume
n = 0.0227 mol is the number of moles
R = 0.082 L/(atm K mol) is the gas constant
T = 25.0 C + 273 = 298 K is the temperature of the gas
Solving the formula for p, we find

Answer:
4.67 kg
Explanation:
Given data
- Dimensions of the lead sheet: 75.0 cm by 55.0 cm by 0.10 cm
- Density of lead: 11.3 g/cm³
Step 1: Calculate the volume of the sheet
The volume of the sheet is equal to the product of its dimensions.

Step 2: Calculate the mass of the sheet
The density (ρ) is equal to the mass divided by the volume.

Answer: Motion, providing a burst of power that can move a specific part of the device.
Explanation: Hope this helps