<h3>
![\tt Kc=\dfrac{[CO_2]}{[C][O_2]}](https://tex.z-dn.net/?f=%5Ctt%20Kc%3D%5Cdfrac%7B%5BCO_2%5D%7D%7B%5BC%5D%5BO_2%5D%7D)
</h3><h3>Further explanation</h3>
Given
Reaction
C+02 = CO2
Required
The equilibrium constant
Solution
The equilibrium constant is the ratio of concentration or pressure between the product and the reactant with each reaction coefficient raised
The equilibrium constant is based on the concentration (Kc) in a reaction
pA + qB -----> mC + nD
![\large {\boxed {\bold {Kc ~ = ~ \frac {[C] ^ m [D] ^ n} {[A] ^ p [B] ^ q}}}}](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7B%5Cbold%20%7BKc%20~%20%3D%20~%20%5Cfrac%20%7B%5BC%5D%20%5E%20m%20%5BD%5D%20%5E%20n%7D%20%7B%5BA%5D%20%5E%20p%20%5BB%5D%20%5E%20q%7D%7D%7D%7D)
So for the reaction :
C+O₂ ⇔ CO₂
![\tt Kc=\dfrac{[CO_2]}{[C][O_2]}](https://tex.z-dn.net/?f=%5Ctt%20Kc%3D%5Cdfrac%7B%5BCO_2%5D%7D%7B%5BC%5D%5BO_2%5D%7D)
Answer:
True
Explanation:
The molecule CH20 contains two single bonds and one double bond.
Answer:
Explanation:
13 ) symbol of enthalpy change = Δ H .
14 ) enthalpy change is nothing but heat absorbed or evolved .
During fusion enthalpy change
Δ H .= m Lf , m is mass and Ls is latent heat of fusion
During evaporation, enthalpy change
Δ H .= m Lv , m is mass and Lv is latent heat of evaporation
during temperature rise , enthalpy change
Δ H = m c Δ T
In case of gas , enthalpy change can be calculated by the following relation
Δ H = Δ E + W , Δ E is change in internal energy , W is work done by gas.
15 ) When enthalpy change is negative , that means heat is released to the environment .So reaction is called exothermic .
when heat is absorbed enthalpy change is positive . Reaction is endothermic.
Answer:
A. The average of all the data points