Avogadro's number: 6.02 x 10^23 atoms is present in 1mol of a solid (i.e. 22, 400 cm3)
Hence, in 1 cm3, 6.02 x 10^23 /22400 atoms is present = 2 x 10 ^ 19 atoms.
Potential energy (PE ) = m g h
Where:
m = mass = 3800 kg
g = acceleration due gravity = 10 m/s^2
h = heigth = 110 meters
Replacing:
PE = 3800 * 10 * 110 = 4,180,000 J
Answer:
(a) The range of the projectile is 31,813.18 m
(b) The maximum height of the projectile is 4,591.84 m
(c) The speed with which the projectile hits the ground is 670.82 m/s.
Explanation:
Given;
initial speed of the projectile, u = 600 m/s
angle of projection, θ = 30⁰
acceleration due to gravity, g = 9.8 m/s²
(a) The range of the projectile in meters;

(b) The maximum height of the projectile in meters;

(c) The speed with which the projectile hits the ground is;

Answer:
a) The magnitude of the magnetic field = 7.1 mT
b) The direction of the magnetic field is the +z direction.
Explanation:
The force, F on a current carrying wire of current I, and length, L, that passes through a magnetic field B at an angle θ to the flow of current is given by
F = (B)(I)(L) sin θ
F/L = (B)(I) sin θ
For this question,
(F/L) = 0.113 N/m
B = ?
I = 16.0 A
θ = 90°
0.113 = B × 16 × sin 90°
B = 0.113/16 = 0.0071 T = 7.1 mT
b) The direction of the magnetic field will be found using the right hand rule.
The right hand rule uses the first three fingers on the right hand (the thumb, the pointing finger and the middle finger) and it predicts correctly that for current carrying wires, the thumb is in the direction the wire is pushed (direction of the force; -y direction), the pointing finger is in the direction the current is flowing (+x direction), and the middle finger is in the direction of the magnetic field (hence, +z direction).