Answer:
Explanation:
Atoms—and the protons, neutrons, and electrons that compose them—are extremely small. For example, a carbon atom weighs less than 2 × 10−23 g, and an electron ... The amu was originally defined based on hydrogen, the lightest element, ... but three-letter symbols have been used to describe some elements that have ...
Protons: Protons are positively charged particles that are also found in the nucleus. Like neutrons, protons give mass to the atom but do not participate in ... 3) Electrons: Electrons are negatively charged particles that are found in ... pair of electrons with 4 different hydrogen atoms, forming a molecule of CH4 (methane).Elements differ from each other in the number of protons they have, e.g. ... Atoms of an element that have differing numbers of neutrons (but a constant atomic ... Electrons, because they move so fast (approximately at the speed of light), ...toms are made up of particles called protons, neutrons, and electrons, which ... Therefore, they do not contribute much to an element's overall atomic mass. ... For instance, iron, Fe, can exist in its neutral state, or in the +2 and +3 ionic states. ... Isotopes of the same element will have the same atomic number but different ...
Openness to experience, Neuroticism, agreeableness, Extroversion, Conscientiousness
The work done occurs only in the direction the block was moved - horizontally. Work is given by:
W = F(h) * d
Where F(h) is the force applied in that direction (horizontal) and d is the distance in that direction. In this case, F(h) is the horizontal component of the applied force, F(app). However, the question doesn't give us F(app), so we need to find it some other way.
Since the block is moving at a constant speed, we know the horizontal forces must be balanced so that the net force is 0. This means that F(h) must be exactly balanced by the friction force, f. We can express F(h) as a function of F(app):
F(h) = F(app)cos(23)
Friction is a little trickier - since the block is being PUSHED into the ground a bit by the vertical component of the applied force, F(v), the normal force, N, is actually a bit more than mg:
N = mg + F(v) = mg + F(app)sin(23)
Now we can get down to business and solve for F(app) - as mentioned above:
F(h) = f
F(h) = uN
F(h) = u * (mg + F(v))
F(app)cos(23) = 0.20 * (33 * 9.8 + F(app)sin(23))
F(app) = 76.8
Now that we have F(app), we can find the exact value of F(h):
F(h) = F(app)cos(23)
F(h) = 76.8cos(23)
F(h) = 70.7
And now that we have F(h), we can find W:
W = F(h) * d
W = 70.7 * 6.1
W = 431.3
Therefore, the work done by the worker's force is 431.3 J. This also represents the increase in thermal energy of the block-floor system.