The EMT must assume that any unwitnessed water-related incident is accompanied by potential spinal damage.
<h3>What is spinal damage?</h3>
- Nerves or the spinal cord in any way damaged at the end of the spinal canal.
- A rapid strike or cut to the spine can cause a traumatic spinal cord damage.
- Below the damage site, a spinal cord injury frequently results in a lifelong loss of strength, feeling, and function.
- A lot of people with spinal cord injuries may lead productive, independent lives with the help of rehabilitation and assistive technology.
- Symptom-reducing medications and spinal stabilisation surgery are used as treatments.
- Herniated discs are among the common injuries and diseases of the spine. Stenosis of the lower back and Scoliosis are others.
- After taking part in a rehabilitation programme, over 80% of people with incomplete spinal cord injury (SCI) can walk again.
Learn more about spinal cord here:
brainly.com/question/23916836
#SPJ4
Answer:

Explanation:
m = Mass of object = 
mg = Weight of object = 20 N
g = Acceleration due to gravity = 
v = Final velocity = 15 m/s
u = Initial velocity = 0
d = Distance moved by the object = 150 m
= Angle of slope = 
f = Force of friction
fd = Work done against friction
The force balance of the system is

The work done against friction is
.
Answer:
Approximately
(assuming that the projectile was launched at angle of
above the horizon.)
Explanation:
Initial vertical component of velocity:
.
The question assumed that there is no drag on this projectile. Additionally, the altitude of this projectile just before landing
is the same as the altitude
at which this projectile was launched:
.
Hence, the initial vertical velocity of this projectile would be the exact opposite of the vertical velocity of this projectile right before landing. Since the initial vertical velocity is
(upwards,) the vertical velocity right before landing would be
(downwards.) The change in vertical velocity is:
.
Since there is no drag on this projectile, the vertical acceleration of this projectile would be
. In other words,
.
Hence, the time it takes to achieve a (vertical) velocity change of
would be:
.
Hence, this projectile would be in the air for approximately
.
Answer: Negatively charged particles are repelled by other negatively charged particles
Explanation:
Answer:
E = -4000 N / C
Explanation:
The potential and electric field are related
V = - E s
E = - V / s
we reduce the magnitudes to the SI system
s = 4 mm (1 m / 1000 mm) = 0.004 m
we calculate
E = - 16 /0.004
E = -4000 N / C