Answer:
The displacement reactions are regarded as redox reactions because they involve the formal transfer of electrons from one chemical specie to the other
2) The series of reactivity of the metals in the order of increasing reactivity are;
↓
↓
Explanation:
1) Redox (oxidation-reduction) reaction is a chemical reaction involving the loss and gain of electrons from one chemical species to another, where the chemical species that undergoes oxidation, loses electrons and is termed the reducing agent, while the other chemical species that undergoes reduction, gains electrons, and is termed the oxidizing agent
2) The redox reaction can being based on the affinity for electrons depends on the positions of the reactants in the electrochemical series as well as the chemical reactivity of the metals with zinc being a stronger reducing agent and more chemically reactive than copper and magnesium being a stronger reducing agent and more chemically reactive than zinc
Least reactive (Cu) < (Zn) < Mg Most reactive
Copper < Zinc < Magnesium.
It was loss of nutrients, I think
Explanation:
The quarry was dug up and vegetation started dying. The quarry was probably rich with nutrients
Please brainliest !! ❤️
Answer : The value of reaction quotient, Q is 0.0625.
Solution : Given,
Concentration of
= 2.00 M
Concentration of
= 2.00 M
Concentration of
= 1.00 M
Reaction quotient : It is defined as a concentration of a chemical species involved in the chemical reaction.
The balanced equilibrium reaction is,

The expression of reaction quotient for this reaction is,
![Q=\frac{[Product]^p}{[Reactant]^r}\\Q=\frac{[NH_3]^2}{[N_2]^1[H_2]^3}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BProduct%5D%5Ep%7D%7B%5BReactant%5D%5Er%7D%5C%5CQ%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5E1%5BH_2%5D%5E3%7D)
Now put all the given values in this expression, we get

Therefore, the value of reaction quotient, Q is 0.0625.
The reaction will be: FeBr2 + K --> KBr + Fe
Balancing gives: FeBr2 + 2K --> 2KBr + Fe
The molar mass of FeBr2 is 55.85 + 2*79.9 = 215.65 g/mol.
We divide 40 g / 215.65 g/mol = 0.185 mol FeBr2
Based on stoichiometry:
(0.185 mol FeBr2)(2 mol KBr/1 mol FeBr2) = 0.370 mol KBr
Answer: D. Sublimation
Explanation: I just took the test.