Answer:
0.5 kW
Explanation:
The given parameters are;
Volume of tank = 1 m³
Pressure of air entering tank = 1 bar
Temperature of air = 27°C = 300.15 K
Temperature after heating = 477 °C = 750.15 K
V₂ = 1 m³
P₁V₁/T₁ = P₂V₂/T₂
P₁ = P₂
V₁ = T₁×V₂/T₂ = 300.15 * 1 /750.15 = 0.4 m³

For ideal gas,
= 5/2×R = 5/2*0.287 = 0.7175 kJ
PV = NKT
N = PV/(KT) = 100000×1/(750.15×1.38×10⁻²³)
N = 9.66×10²⁴
Number of moles of air = 9.66×10²⁴/(6.02×10²³) = 16.05 moles
The average mass of one mole of air = 28.8 g
Therefore, the total mass = 28.8*16.05 = 462.135 g = 0.46 kg
∴ dQ = 0.46*0.7175*(750.15 - 300.15) = 149.211 kJ
The power input required = The rate of heat transfer = 149.211/(60*5)
The power input required = 0.49737 kW ≈ 0.5 kW.
Answer: the increase in the external resistor will affect and decrease the current in the circuit.
Explanation: A battery has it own internal resistance, r, and given an external resistor of resistance, R, the equation of typical of Ohm's law giving the flow of current is
E = IR + Ir = I(R + r)........(1)
Where IR is the potential difference flowing in the external circuit and Or is the lost voltage due to internal resistance of battery. From (1)
I = E/(R + r)
As R increases, and E, r remain constant, the value (R + r) increases, hence the value of current, I, in the external circuit decreases.
Answer:
The red one
Explanation:
not acturlly a thing between them so i might be wrong
Answer:
Accuracy and precision allow us to know how much we can rely on a measuring device readings. ±.001 as a "accuracy" claim is vague because there is no unit next to the figure and the claim fits better to the definition of precision.
Explanation:
Accuracy and Precision: the golden couple.
Accuracy and precision are key elements to define if a measuring device is reliable or not for a specific task. Accuracy determines how close are the readings from the ideal/calculated values. On the other hand, precision refers to repeatability, that is to say how constant the readings of a device are when measuring the same element at different times. One of those two key concepts may not fulfill the criteria for measuring tool to be used on certain engineering projects where lack of accuracy (disntant values from real ones) or precision (not constant readings) may lead to malfunctons and severe delays on the project development.
±.001 what unit?
The manufacturer says that is an accuracy indicator, nevertheless there is now unit stated so this is not useful to see how accurate the device is. Additionally, That notation is more used to refer to device tolerances, that is to say the range of possible values the instrument may show when reading and element. It means it tells us more about the device precision during measurments than actual accuracy. I would recommend the following to the dial calipers manufacturers to better explain its measurement specifications:
- Use ±.001 as a reference for precision. It is important to add the respective unit for that figure.
- Condcut test to define the actual accuracy value an present it using one of the common used units for that: Error percentage or ppm.