complete question
A certain amplifier has an open-circuit voltage gain of unity, an input resistance of 1 \mathrm{M} \Omega1MΩ and an output resistance of 100 \Omega100Ω The signal source has an internal voltage of 5 V rms and an internal resistance of 100 \mathrm{k} \Omega.100kΩ. The load resistance is 50 \Omega.50Ω. If the signal source is connected to the amplifier input terminals and the load is connected to the output terminals, find the voltage across the load and the power delivered to the load. Next, consider connecting the load directly across the signal source without the amplifier, and again find the load voltage and power. Compare the results. What do you conclude about the usefulness of a unity-gain amplifier in delivering signal power to a load?
Answer:
3.03 V 0.184 W
2.499 mV 125*10^-9 W
Explanation:
First, apply voltage-divider principle to the input circuit: 1
*5
= 4.545 V
The voltage produced by the voltage-controlled source is:
A_voc*V_i = 4.545 V
We can find voltage across the load, again by using voltage-divider principle:
V_o = A_voc*V_i*(R_o/R_l+R_o)
= 4.545*(100/100+50)
= 3.03 V
Now we can determine delivered power:
P_L = V_o^2/R_L
= 0.184 W
Apply voltage-divider principle to the circuit:
V_o = (R_o/R_o+R_s)*V_s
= 50/50+100*10^3*5
= 2.499 mV
Now we can determine delivered power:
P_l = V_o^2/R_l
= 125*10^-9 W
Delivered power to the load is significantly higher in case when we used amplifier, so a unity gain amplifier can be useful in situation when we want to deliver more power to the load. It is the same case with the voltage, no matter that we used amplifier with voltage open-circuit gain of unity.
Answer:
the torque capacity is 30316.369 lb-in
Explanation:
Given data
OD = 9 in
ID = 7 in
coefficient of friction = 0.2
maximum pressure = 1.5 in-kip = 1500 lb
To find out
the torque capacity using the uniform-pressure assumption.
Solution
We know the the torque formula for uniform pressure theory is
torque = 2/3 ×
× coefficient of friction × maximum pressure ( R³ - r³ ) .....................................1
here R = OD/2 = 4.5 in and r = ID/2 = 3.5 in
now put all these value R, r, coefficient of friction and maximum pressure in equation 1 and we will get here torque
torque = 2/3 ×
× 0.2 × 1500 ( 4.5³ - 3.5³ )
so the torque = 30316.369 lb-in
Answer:
The number of inputs processed by the new machine is 64
Solution:
As per the question:
The time complexity is given by:

where
n = number of inputs
T = Time taken by the machine for 'n' inputs
Also
The new machine is 65 times faster than the one currently in use.
Let us assume that the new machine takes the same time to solve k operations.
Then
T(k) = 64 T(n)


k = 64n
Thus the new machine will process 64 inputs in the time duration T
Answer:
The options a)- A blast furnace is used and d)-Coke is used to produce the heat are FALSE.
Explanation:
Aluminium is a chemical element and the most abundant metal present in the Earth's crust. An aluminium ore is called bauxite. Aluminium is extracted from its ore by the process of electrolysis, called the Hall–Héroult process. The extraction of aluminium is an expensive process as it requires large amount of electricity. The bauxite is purified to produce aluminium oxide. Then, aluminium is extracted from the aluminium oxide.
<u>Therefore, the refining of aluminum from its ore does not involve the use of a blast furnace and coke to produce heat.</u>
<u />
Answer:
water rise = 22 mm
Explanation:
weight of packet IN AIR = 40 *9.81 =392.4 N
weight of packet IN WATER= 18 *9.81 =176.58 N
by Archimedi's principle
difference in weight = weight of displaced water
w_a - w_w = \rho_w v_d g
392.4 - 176.58 = 1000* v_d* 9.81
v_d = 0.022 m^3
v_d = A*H_rise
0.022 =1*H_rise
H_rise = 0.022 m = 22 mm
water rise = 22 mm