1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
3 years ago
11

Select the correct answer.

Physics
2 answers:
Kryger [21]3 years ago
6 0

Answer:

8.36*10^-4N/C

Explanation:

To find the electric field you use the following formula:

F=qE\\\\E=\frac{F}{q}

F: electric force = 8.2*10^-2 N

q: charge of the balloon = 9.4*10 C

By replacing F and q you obtain:

E=\frac{8.2*10^{-2}N}{9.4*10}=8.36*10^{-4}\frac{N}{C}

hence, the electric field is 8.36*10^-4N/C

kvasek [131]3 years ago
4 0

Answer:

8.37×10⁻⁴ N/C

Explanation:

Electric Field: This is the ratio of electrostatic force to electric charge. The S.I unit of electric field is N/C.

From the question, the expression for electric field is given as,

E = F/Q.......................... Equation 1

Where E = Electric Field, F = force experienced by the charged balloon, Q = Charge on the balloon.

Given: F = 8.2×10⁻² Newton, Q = 9.8×10 Coulombs = 98 Coulombs

Substitute these values into equation 1

E = 8.2×10⁻² /98

E = 8.37×10⁻⁴ N/C

Hence the Electric Field of the charged balloon =  8.37×10⁻⁴ N/C

You might be interested in
A large power plant heats 1917 kg of water per second to high-temperature steam to run its electrical generators.
erastova [34]

Complete Question

A large power plant heats 1917 kg of water per second to high-temperature steam to run its electrical generators.

(a) How much heat transfer is needed each second to raise the water temperature from 35.0°C to 100°C, boil it, and then raise the resulting steam from 100°C to 450°C? Specific heat of water is 4184 J/(kg · °C), the latent heat of vaporization of water is 2256 kJ/kg, and the specific heat of steam is 1520 J/(kg · °C).

J

(b) How much power is needed in megawatts? (Note: In real power plants, this process occurs under high pressure, which alters the boiling point. The results of this problem are only approximate.)

MW

Answer:

The heat transferred is  Q = 5.866 * 10^9 J

The power is  P = 5866\  MW

Explanation:

From the question we are told that

      Mass of the water per second is m = 1917 \ kg

      The initial temperature of the water is T_i  = 35^oC

      The boiling point of water is  T_b = 100^oC

      The final temperature T_f = 450^oC

      The latent heat of vapourization of water is  c__{L}} = 2256*10^3 J/kg

      The specific heat of water c_w = 4184 J/kg^oC

      The specific heat of stem is C_s =1520 \ J/kg ^oC

Generally the heat needed each second is mathematically represented as

         Q = m[c_w (T_i - T_b) + m* c__{L}}  + m* c__{S}} (T_f - T_b)]

Then substituting the value

        Q = m[c_w [T_i - T_b] + c__{L}}  + C__{S}} [T_f - T_b]]

         Q = 1917 [(4184) [100 - 35] + [2256 * 10^3]  +[1520]  [450 - 100]]

         Q = 1917 * [3.05996 * 10^6]

         Q = 5.866 * 10^9 J

The power required is mathematically represented as

         P = \frac{Q}{t}

From the question t = 1\ s

So  

        P = \frac{5.866 *10^9}{1}

        P = 5866*10^6 \ W

        P = 5866\  MW

6 0
3 years ago
How is the pool play helping Adam lift the object
lorasvet [3.4K]
Adam<span> applies and input force to the pulley as he pulls down to </span>lift the object<span>. As he does this, </span>Adam<span>wonders about how the pulley is </span>helping<span> him

</span>
8 0
3 years ago
A pair of slits separated by 1 mm, are illuminated with monochromatic light of wavelength 411 nm. The light falls on a screen 1.
Ilya [14]

Answer:

t = 0.192 \mu m

Explanation:

Path difference due to a transparent slab is given as

\Delta x = (\mu - 1) t

here we know that

\mu = 1.79

now total shift in the bright fringe is given as

Shift = \frac{D(\mu - 1)t}{d}

Also we know that the fringe width of maximum intensity is given as

\delta x = \frac{\lambda D}{d}

now we have

\frac{D}{d} = \frac{\delta x}{\lambda}

now the shift is given as

Shift = \frac{(\mu - 1) t \delta x}{\lambda}

given that the shift is

Shift = 0.37 \delta x

here we have

0.37 \delta x = \frac{(\mu - 1) t \delta x}{\lambda}

now plug in all values in it

0.37 = \frac{(1.79 - 1) t}{411 \times 10^{-9}}

t = 0.192 \times 10^{-6} m

t = 0.192 \mu m

3 0
3 years ago
Which of the following is MOST useful to scientists in measuring the size of asteroids?
Alenkasestr [34]

Answer:c-The gravitational effect when spacecraft flies close to the asteriod

Explanation:

Gravitational effect on the spacecraft gives an estimate that how big is the asteroid by experiencing its gravitational pull.

The amount of extra thrust required to maintain the trajectory of the spacecraft during its motion hints at the scientist about the size of the asteroid.

Gravitational pull is directly proportional to the mass of object so greater the mass, greater will be the pull.

5 0
3 years ago
Students hypothesized that by running an electric current through the wire of the apparatus shown here, they could cause a non-m
astra-53 [7]
The answer is d i think
5 0
3 years ago
Read 2 more answers
Other questions:
  • two charges + 2.6 uc and -5.4uc experience an attractive force of 6.5mN. What is the separation between the charges?
    7·1 answer
  • Consider a horizontal, uniform board of weight 125 N and length 4 m that is supported by vertical chains at each end. A person w
    12·1 answer
  • Can someone explain subshell/electron configuration to me?
    14·1 answer
  • PLEASE HELP WILL MARK AS BRAINLIEST!!!
    11·1 answer
  • Which scenario did not include a chemical change?
    12·1 answer
  • Why did the producers and director decide to have the girls run outside to the water during the climactic moments of Act Three?
    14·1 answer
  • Please help ! Which of the following objects has the greatest momentum?
    11·1 answer
  • Resolve the weight of the box to find the component of the weight acting parallel to the slope.
    6·1 answer
  • A football player kicks a field goal from a distance of 45 m from the goalpost. The football is launched at a 35° angle above th
    14·1 answer
  • What information could you gather about a star if its light curve had multiple
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!