C. A complete revolution is 360 degree. two revolution is 720.
The lungs art part of The excretory<span> system....
</span><span>somatic nervous system is ..... </span><span>autonomic nervous system<span>....
</span></span>
The process in which organ systems work to maintain a stable internal environment is called homeostasis. Keeping a stable internal environment requires constant adjustments. Here are just three of the many ways that human organ systems help the body maintain homeostasis:
Respiratory system: A high concentration of carbon dioxide in the blood triggers faster breathing. The lungs exhale more frequently, which removes carbon dioxide from the body more quickly.
Excretory system: A low level of water in the blood triggers retention of water by the kidneys. The kidneys produce more concentrated urine, so less water is lost from the body.
Endocrine system: A high concentration of sugar in the blood triggers secretion of insulin by an endocrine gland called the pancreas. Insulin is a hormone that helps cells absorb sugar from the blood.
Answer:
N= 3
Explanation:
For this exercise we must use Faraday's law
E = - dФ / dt
Ф = B . A = B Acos θ
tje bold indicate vectors. As it indicates that the variation of the field is linear, we can approximate the derivatives
E = - A cos θ (B - B₀) / t
The angle enters the magnetic field and the normal to the area is zero
cos 0 = 1
A = π r²
In the length of the wire there are N turns each with a length L₀ = 2π r
L = N (2π r)
r = L / 2π N
we substitute
A = L² / (4π N²)
The magnetic field produced by a solenoid is
B = μ₀ N/L I
for which
B₀ = μ₀ N/L I
The final field is zero, because the current is zero
B = 0
We substitute
E = - (L² / 4π N²) (0 - μ₀ N/L I) / t
E = μ₀ L I / (4π N t)
N = μ₀ L I / (4π t E)
The electromotive force is E = 0.80 mV = 0.8 10⁻³ V
let's calculate
N = 4π 10⁻⁷ 200 1.60 / (4π 0.120 0.8 10⁻³)]
N = 320 10⁻⁷ / 9.6 10⁻⁶
N = 33.3 10⁻¹
N= 3
International Disaster Management or FEMA
Option a; Electric field can accelerate an electron, but never change its speed
An electric field (also known as an E-field) is a physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It can also refer to the physical field of a charged particle system. Electric fields are created by electric charges and time-varying electric currents. Electric and magnetic fields are both aspects of the electromagnetic field, one of nature's four fundamental interactions (also known as forces). Electric fields are significant in many areas of physics and are used in electrical technology. In atomic physics and chemistry, for example, the electric field is the attractive force that holds the atomic nucleus and electrons together in atoms. It is also the driving force behind chemical bonds between atoms.
Learn more about Electric field here:
brainly.com/question/15800304
#SPJ4