Answer:
130 km at 35.38 degrees north of east
Explanation:
Suppose the HQ is at the origin (x = 0, y = 0)
So the coordinates of the helicopter after the 1st flight is


After the 2nd flight its coordinate would be:


So in order to fly back to its HQ it must fly a distance and direction of
north of east
Answer:
<em>two different components</em>
Explanation:
<em>Any two-dimensional vector can be conceived of as having two distinct components. The component of a single vector describes the vector's effect in a specific direction.</em>
Answer:
The resultant velocity of the plane relative to the ground is;
150 kh/h north
Explanation:
The flight speed of the plane = 210 km/h
The direction of flight of the plane = North
The speed at which the wind is blowing = 60 km/h
The direction of the wind = South
Therefore, representing the speed of the plane and the wind in vector format, we have;
The velocity vector of the plane = 210.
The velocity vector of the wind = -60.
Where, North is taken as the positive y or
direction
The resultant velocity vector is found by summation of the two vectors as follows;
Resultant velocity vector = The velocity vector of the plane + The velocity vector of the wind
Resultant velocity vector = 210.
+ (-60.
) = 210.
- 60.
= 150.
The resultant velocity vector = 150.
Therefore, the resultant velocity of the plane relative to the ground = 150 kh/h north.