The correct answer would be D
Answer:
D. Metallic atoms have valence shells that are mostly empty, which
means these atoms are more likely to give up electrons and allow
them to move freely.
Explanation:
Metals usually contain very few electrons in their valence shells hence they easily give up these few valence electrons to yield metal cations.
In the metallic bond, metal cations are held together by electrostatic attraction between the metal ions and a sea of mobile electrons.
Since metals give up their electrons easily, it is very easy for them to participate in metallic bonding. They give up their electrons easily because their valence shells are mostly empty, metal valence shells usually contain only a few electrons.
That waves travel faster than the wave lenght!
<u>The possible formulas for impulse are as follows:</u>
J = FΔt
J = mΔv
J = Δp
Answer: Option A, E and F
<u>Explanation:</u>
The quantity which explains the consequences of a overall force acting on an object (moving force) is known as impulse. It is symbolised as J. When the average overall force acting on an object than such products are formed and in given duration than the start fraction force over change in time end fraction J = FΔt.
The impulse-momentum theorem explains that the variation in momentum of an object is same as the impulse applied to it: J = Δp J = mΔv if mass is constant J = m dv + v dm if mass changes. Logically, the impulse-momentum theorem is equivalent to Newton second laws of motion which is also called as force law.