Answer:
Two stroke cycle Four stroke cycle
1.Have on power stroke in one revolution. 1.have one power
stroke in two revolution
2.Complete the cycle in 2 stroke 2.Complete the cycle in 4 stroke
3.It have ports 3.It have vales
4.Greater requirement of cooling 4.Lesser requirement of cooling
5.Less thermal efficiency 5.High thermal efficiency
6.Less volumetric efficiency 6.High volumetric efficiency
7.Size of flywheel is less. 7.Size of flywheel is more.
Expand your technical knowledge, form global networks and balance life & work commitments. Our advanced diplomas remain current with technological and industry developments.
Answer:
Days: 6.9444 days
Production rate: 547.2035 ft²/s
Explanation:
the solution is attached in the Word file
Answer:
The correct option is;
c. the exergy of the tank can be anything between zero to P₀·V
Explanation:
The given parameters are;
The volume of the tank = V
The pressure in the tank = 0 Pascal
The pressure of the surrounding = P₀
The temperature of the surrounding = T₀
Exergy is a measure of the amount of a given energy which a system posses that is extractable to provide useful work. It is possible work that brings about equilibrium. It is the potential the system has to bring about change
The exergy balance equation is given as follows;
![X_2 - X_1 = \int\limits^2_1 {} \, \delta Q \left (1 - \dfrac{T_0}{T} \right ) - [W - P_0 \cdot (V_2 - V_1)]- X_{destroyed}](https://tex.z-dn.net/?f=X_2%20-%20X_1%20%3D%20%5Cint%5Climits%5E2_1%20%7B%7D%20%5C%2C%20%5Cdelta%20Q%20%5Cleft%20%281%20-%20%5Cdfrac%7BT_0%7D%7BT%7D%20%5Cright%20%29%20-%20%5BW%20-%20P_0%20%5Ccdot%20%28V_2%20-%20V_1%29%5D-%20X_%7Bdestroyed%7D)
Where;
X₂ - X₁ is the difference between the two exergies
Therefore, the exergy of the system with regards to the environment is the work received from the environment which at is equal to done on the system by the surrounding which by equilibrium for an empty tank with 0 pressure is equal to the product of the pressure of the surrounding and the volume of the empty tank or P₀ × V less the work, exergy destroyed, while taking into consideration the change in heat of the system
Therefore, the exergy of the tank can be anything between zero to P₀·V.
Answer and Explanation:
<u>The correct answer choice is Contacting Overhead Power Lines.</u>
This is because the powerlines are making contact (touching) his car, and the example isn't related to the other answer choices.
<u><em>#teamtrees #PAW (Plant And Water)</em></u>