Answer:
5 moles of NO₂ will remain after the reaction is complete
Explanation:
We state the reaction:
3NO₂(g) + H₂O(l) → 2HNO₃(l) + NO(g)
3 moles of nitric oxide can react with 1 mol of water. Ratio is 3:1, so we make this rule of three:
If 3 moles of nitric oxide need 1 mol of water to react
Then, 26 moles of NO₂ may need (26 .1) / 3 = 8.67 moles of H₂O
We have 7 moles of water but we need 8.67 moles, so water is the limiting reactant because we do not have enough. In conclusion, the oxide is the reagent in excess. We can verify:
1 mol of water needs 3 moles of oxide to react
Therefore, 7 moles of water will need (7 .3)/1 = 21 moles of oxide
We have 26 moles of NO₂ and we need 21, so we still have oxide after the reaction is complete. We will have (26-21) = 5 moles of oxide that remains
Answer:
The right answer is B) evaporation
Explanation:
Transpiration occurs at the leaf surface which is the loss of water due to the evaporation. This phenomenon works as trigger of water and mineral movement above to the xylem. Due to the evaporation of water at the leaf, negative pressure is created at the surface of leaf. Tension is produced which results in the pull of water from roots up to the xylem vessels.
Answer:
6,8 g
Explanation:
c = 4.18 J/(g * °C) = 4180 J / (kg * °C)
= 25 °C
= 36,4 °C
Q = 325 J
The formula is: Q = c * m * (
)
m =
Calculating:
m = 325 / 4180 * (36,4 - 25) ≈ 0,0068 kg = 6,8 g