The potential energy will be 1.46*10^-4J.
To find the answer, we have to know about the torque acting on a current loop in a uniform magnetic field.
<h3>How to find the potential energy of the loop?</h3>
- We have the expression for torque acting on a current loop in a uniform magnetic field as,

where; M is the magnetic dipole moment, B is the magnetic field , and theta is the angle between M and B.
- As we know that, the torque is equal to force times the perpendicular distance. Thus, it is equivalent to the work done. This work is stored as the potential energy in the loop.
- Thus, the potential energy will be,

Thus, we can conclude that, the potential energy will be 1.46*10^-4J.
Learn more about the torque here:
brainly.com/question/27949876
#SPJ4
Gravitational potential energy i think
Explanation:
Given parameters:
Mass of Neil Armstrong = 160kg
Gravitational pull of earth = 10N/kg
Moon's pull = 17% of the earth's pull
Unknown:
Difference between Armstrong's weight on moon and on earth.
Solution:
To find the weight,
Weight = mass x acceleration due to gravity = mg
Moon's gravitational pull = 17% of the earth's pull = 17% x 10 = 1.7N/kg
Weight on moon = 160 x 1.7 = 272N
Weight on earth = 160 x 10 = 1600N
The difference in weight = 1600 - 272 = 1328N
The weight of Armstrong on earth is 1328N more than on the moon.
Learn more:
Weight and mass brainly.com/question/5956881
#learnwithBrainly
The correct answer is:
<span>C) The actual frequency of the siren does not change despite appearances.
In fact, Bob will observe an increase in the apparent frequency as the emergency vehicle approaches him, while Jill will observe a decrease in the apparent frequency as the emergency vehicle moves away from him, because of the Doppler effect (the relative velocity between the observer and the source of the sound is changing), but this effect involves the apparent frequency, while the real frequency of the siren will remain the same.</span>