Answer:

Explanation:
From the Question We are told that
Initial Force 
Final Force 
Distance between the front and rear wheels \triangle x=3.20 m
Since

Therefore


Generally the equation for The center of mass is at x_2 is mathematically
given by




<span>The bullfrog is sitting at rest on the log. The force of gravity pulls down on the bullfrog. We can find the weight of the bullfrog due to the force of gravity.
weight = mg = (0.59 kg) x (9.80 m/s^2)
weight = 5.782 N
The bullfrog is pressing down on the log with a force of 5.782 newtons. Newton's third law tells us that the log must be pushing up on the bullfrog with a force of the same magnitude. Therefore, the normal force of the log on the bullfrog is 5.782 N</span>
Answer:
Yes the body will receive a dangerous shock in both cases.
Explanation:
Different parts of the body has different resistance. skin has the high resistance as compared to other organs of the body.
Dry skin has high resistance than wet skin this is because water is relatively good conductor of electricity, it adds parallel path to the current flow and hence reduces skin resistance.
Dry hands body has approximately 500 kΩ resistance and if 120 V electricity supply current received will be:
I = V/R= 120/ 500*10^3
I= 0.24 mA
Even the current seems is much lower than the safe zone but this is the case in case of DC voltage in case of AC voltage the body will receive a shock this is because the skin pass more current when the voltage is changing i.e. AC.
Similarly for wet hands body resistance is 1 kΩ. so the current through the body seems to be:
I = 120 / 1000
I = 12 mA
The current is higher than safe zone so the body will receive a dangerous shock.
The electrical symbols are very important especially when fixing electrical appliances because it tells you where the wire of neutral and live go.
Heat = change in internal energy + Work done The internal energy of a system = heat added and mechanical work done by the system, i.e. U = Q + W rearranging the formula above, will give us: Q = deltaU + W
Q = U - W = 604 kJ - 43.0 kJ = 561,000 J would be the answer.