Answer: 0.43 V
Explanation:
L = [μ(0) * N² * A] / l
Where
L = Inductance of the solenoid
N = the number of turns in the solenoid
A = cross sectional area of the solenoid
l = length of the solenoid
7.3*10^-3 = [4π*10^-7 * 450² * A] / 0.24
1.752*10^-3 = 4π*10^-7 * 202500 * A
1.752*10^-3 = 0.255 * A
A = 1.752*10^-3 / 0.255
A = 0.00687 m²
A = 6.87*10^-3 m²
emf = -N(ΔΦ/Δt).........1
L = N(ΔΦ/ΔI) so that,
N*ΔΦ = ΔI*L
Substituting this in eqn 1, we have
emf = - ΔI*L / Δt
emf = - [(0 - 3.2) * 7.3*10^-3] / 55*10^-3
emf = 0.0234 / 0.055
emf = 0.43 V
Answer:
h' = 603.08 m
Explanation:
First, we will calculate the initial velocity of the pellet on the surface of Earth by using third equation of motion:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity on the surface of earth = - 9.8 m/s² (negative sign due to upward motion)
h = height of pellet = 100 m
Vf = final velocity of pellet = 0 m/s (since, pellet will momentarily stop at highest point)
Vi = Initial Velocity of Pellet = ?
Therefore,
(2)(-9.8 m/s²)(100 m) = (0 m/s)² - Vi²
Vi = √(1960 m²/s²)
Vi = 44.27 m/s
Now, we use this equation at the surface of moon with same initial velocity:
2g'h' = Vf² - Vi²
where,
g' = acceleration due to gravity on the surface of moon = 1.625 m/s²
h' = maximum height gained by pellet on moon = ?
Therefore,
2(1.625 m/s²)h' = (44.27 m/s)² - (0 m/s)²
h' = (1960 m²/s²)/(3.25 m/s²)
<u>h' = 603.08 m</u>
So we can know what is in space maybe weird or interesting stuff
Answer:
finding Cepheid variable and measuring their periods.
Explanation:
This method is called finding Cepheid variable and measuring their periods.
Cepheid variable is actually a type of star that has a radial pulsation having a varying brightness and diameter. This change in brightness is very well defined having a period and amplitude.
A potent clear link between the luminosity and pulsation period of a Cepheid variable developed Cepheids as an important determinants of cosmic criteria for scaling galactic and extra galactic distances. Henrietta Swan Leavitt revealed this robust feature of conventional Cepheid in 1908 after observing thousands of variable stars in the Magellanic Clouds. This in fact turn, by making comparisons its established luminosity to its measured brightness, allows one to evaluate the distance to the star.
I think it is option (C).
If the answer is helpful then mark me as brainly.