Answer:
a.
1. NO2(g): Reactant.
2. CO(g): Reactant.
3. NO3(g): Intermediate.
4. CO2(g): Product.
5. NO(g): Product.
b. See attached picture.
Explanation:
Hello,
a. In this case, given the reactions, we can identify each species as:
1. NO2(g): Reactant because it remains at the left side in the overall reaction.
2. CO(g): Reactant because it remains at the left side in the overall reaction.
3. NO3(g): Intermediate because it is a product in the step 1 and a reactant in step 2, for that reason it is not present in the overall reaction.
4. CO2(g): Product because it remains at the right side in the overall reaction.
5. NO(g): Product because it remains at the right side in the overall reaction.
b. In this case, given that the first step is slow and endothermic, it has a high activation energy and the products will have more energy than the reactants, for that reason the final energy is above the initial point. Moreover, since the second step is fast and exothermic, it has a low activation energy and the products will have less energy than the reactants, for that reason, the reaction coordinate diagram is shown on the attached file.
Regards.
Answer:
Chelate, any of a class of coordination or complex compounds consisting of a central metal atom attached to a large molecule, called a ligand, in a cyclic or ring structure. An example of a chelate ring occurs in the ethylenediamine-cadmium complex:
The ethylenediamine ligand has two points of attachment to the cadmium ion, thus forming a ring; it is known as a didentate ligand. (Three ethylenediamine ligands can attach to the Cd2+ ion, each one forming a ring as depicted above.) Ligands that can attach to the same metal ion at two or more points are known as polydentate ligands. All polydentate ligands are chelating agents.
Chelates are more stable than nonchelated compounds of comparable composition, and the more extensive the chelation—that is, the larger the number of ring closures to a metal atom—the more stable the compound. This phenomenon is called the chelate effect; it is generally attributed to an increase in the thermodynamic quantity called entropy that accompanies chelation. The stability of a chelate is also related to the number of atoms in the chelate ring. In general, chelates containing five- or six-membered rings are more stable than chelates with four-, seven-, or eight-membered rings.
Explanation:
It would be C
2 kg x 1000 g/kg x 1mol/18.02 x 6.03 kj/mol = 669kj