Answer:
Option A
Explanation:
A) Yes. The reaction reaches equilibrium when the rate of reaction of the reverse reaction is equal to the rate of the forward reaction , then the only cause for the reverse reaction to be favoured is that the initial rate of the reverse was greater than the forward one.
B) No. The rate constant of the reverse reaction can be greater than the forward one but the rate also depends on concentrations, thus a reverse reaction with greater rate constant can result in the net reaction proceeding in the forward reaction, the reverse reaction or be at equilibrium depending on the concentrations or reactants and products
C) No. A lower activation energy means a higher rate constant , but a higher rate constant does not mean that the net reaction will proceed to the reactants ( see point B)
D) No. The energy changes determine conditions under thermodynamic equilibrium and therefore the net direction of the reaction will depend on the temperature and concentrations of reactants and products with respect to the equilibrium conditions.
To find the answer you need to use the formula that will help you to find the density. Density = mass/volume
d = 43.2g/96.5mL = 0.45g/mL
Answer: A. Cilla Is Correct.
Answer:
the nucleus is the center of the atom, made up of protons and neutrons, without the nucleus you'd just have a bunch of electrons floating around; the nucleus is positively charged
protons are the positively charged particles that sit within the nucleus
neutrons are particles of no charge that sit within the nucleus, and because they have no charge, they do not cancel out the positive charge of the protons, making the nucleus positive
electrons are negatively charged particles that float around the nucleus in an area known as the electron cloud, they orbit around the nucleus because they are attracted to the positive charge of the nucleus (caused by the protons), with charges, opposites attract
Explanation:
MA= output force/ input force
MA= 100N/20N
MA= 50