Answer:
An object at rest does not move and an object in motion does not change its velocity, unless an external force acts upon it
Explanation:
This statement is also known as Newton's first law, or law of inertia.
It states that the state of motion of an object can be changed only if there is an external force (different from zero) acting on it: therefore
- If an object is at rest, it will remain at rest if there is no force acting on it
- If an object is moving, it will continue moving at constant velocity if there is no force acting on it
This phenomenon can be also understood by looking at Newton's second law:
F = ma
where
F is the net force on an object
m is the mass
a is the acceleration
If the net force is zero, F = 0, the acceleration of the object is also zero, a = 0: therefore, the velocity of the object does not change, and it will continue moving at the same velocity (which can be zero, if the object was at rest).
Answer:
y = -19.2 sin (23.15t) cm
Explanation:
The spring mass system is an oscillatory movement that is described by the equation
y = yo cos (wt + φ)
Let's look for the terms of this equation the amplitude I
y₀ = 19.2 cm
Angular velocity is
w = √ (k / m)
w = √ (245 / 0.457
w = 23.15 rad / s
The φ phase is determined for the initial condition t = 0 s
, the velocity is negative v (0) = -vo
The speed of the equation is obtained by the derivative with respect to time
v = dy / dt
v = - y₀ w sin (wt + φ)
For t = 0
-vo = -yo w sin φ
The angular and linear velocity are related v = w r
v₀ = w r₀
v₀ = v₀ sinφ
sinφ = 1
φ = sin⁻¹ 1
φ = π / 4 rad
Let's build the equation
y = 19.2 cos (23.15 t + π/ 4)
Let's use the trigonometric ratio π/ 4 = 90º
Cos (a +90) = cos a cos90 - sin a sin sin 90 = 0 - sin a
y = -19.2 sin (23.15t) cm
Answer:
I think your answer would be D
Explanation:
Thus, a swinging pendulum has its greatest kinetic energy and least potential energy in the vertical position, in which its speed is greatest and its height least; it has its least kinetic energy and greatest potential energy at the extremities of its swing, in which its speed is zero and its height is greatest.
Answer:
345 K
Explanation:
Temperature can be defined as a measure of the degree of coldness or hotness of a physical object.
Generally, it is measured with a thermometer and its units are Celsius (°C), Kelvin (K) and Fahrenheit (°F).
<u>Given the following data;</u>
<em>To convert the temperature in degree Celsius to Kelvin, we would use the following mathematical expression;</em>
Kelvin = 273 + °C
Substituting into the formula, we have;
Kelvin = 273 + 72
<em>Kelvin = 345 K</em>
<em>Therefore, the temperature of 72°C will be equivalent to 345 K on the Kelvin scale.</em>