Answer:
Oscillation whose amplitude reduce with time are called damped oscillation. This happen because of the friction. In oscillation if its amplitude doesn't change with time then they are called Undamped oscillation
To get it to start moving, he have to exert a force equal to its maximum force of static friction.
F= fs,max = Ms m g= (0.21) * (180) * (9.8) = 370 N
Let me know if im wrong but if not brainliest user for helping or best answer
Answer:
0.832 m/s
Explanation:
The work done by the spring W equals the kinetic energy of the object K
The work done by the spring W = 1/2k(x₀² - x₁²) where k = spring constant, x₀ = initial compression = 0.065 m and x₁ = final compression = 0.032 m
The kinetic energy of the object, K = 1/2mv² where m = mass of object and v = speed of object
Since W = K,
1/2k(x₀² - x₁²) = 1/2mv²
k(x₀² - x₁²) = mv²
mv² = k(x₀² - x₁²)
v² = [(k/m)(x₀² - x₁²)]
taking square root of both sides, we have
v = √[(k/m)(x₀² - x₁²)] since ω = angular frequency = √(k/m),
v = √[(k/m)√(x₀² - x₁²)]
v = ω√(x₀² - x₁²)]
Since ω = 14.7 rad/s, we substitute the other variables into the equation, so we have
v = 14.7 rad/s × √((0.065 m)² - (0.032 m)²)]
v = 14.7 rad/s × √(0.004225 m² - 0.001024 m²)]
v = 14.7 rad/s × √(0.003201 m²)
v = 14.7 rad/s × 0.056577
v = 0.832 m/s