Answer:
D. 15.8atm
Explanation:
Given parameters:
Initial pressure = 13atm
Initial temperature = 34°C = 34 + 273 = 307K
Final temperature = 100°C = 100 + 273 = 373K
Unknown:
Final pressure = ?
Solution:
To solve this problem, we apply a derivation of the combined gas law taking the volume as a constant.
The expression is shown mathematically below;
=
P and T pressure and temperature values
1 and 2 are initial and final states
Insert the parameters and solve for T₂;
=
P₂ = 15.8atm
Answer:
A Graduated Cylinder has a limited round and hollow shape with each stamped line demonstrating the volume of fluid being estimated. While they are commonly more exact and exact than lab flagons and recepticles, they ought not be utilized to perform volumetric examination.
Answer:
They are held together by hydrogen bonds
Explanation:
Hydrogen bonds are special dipole-dipole attractions between polar molecules in which a hydrogen atom is directly joined to a highly electronegative atom(oxygen or nitorgen or fluorine).
Such molecules includes water, alkanoic acids, ammonia and amines.
A hydrogen nucleus has a high concentration of positive charge. The bond is actually an electrostatic attraction between the hydrogen atom of one molecule and the electronegative atom(O or N or F).
Hydrogen bonds are very effective in binding molecules into larger units. Most substances that joins with hydrogen bonds have a higher boiling point and lower volatility.
This is why we have a strong intermolecular bond between water molecules.
Answer:
666.67 kg is the mass of a car.
Explanation:
Momentum is defined as amount of motion possessed by the the moving body. It is mathematically calculated by multiplying mass into velocity by which object is moving.

Mass of the car = m =?
Velocity of the car = v = 15.0 m/s
Momentum of the car = P = 10,000.00 kgm/s


666.67 kg is the mass of a car.