Answer:
Magnetic field is in south west direction .
Explanation:
Let us represent various direction by i , j, k . i representing east , j representing north and k representing vertically upward direction .
magnetic field is represented vectorially as follows
B = B₀ ( - i - j )
In the first case velocity of electron
v = v k
Force = q ( v x B )
= -e [ vk x B₀ ( - i - j ) ]
= evB₀ ( j -i )
Direction of force is north -west .
In the second case velocity of electron
v = vj
Force = -e [ vj x B₀ ( - i - j ) ]
= - evB₀ k
force is downward
In the third case, velocity of electron
v = v( -j +i )
Force = -e [ v( -j +i ) x B₀ ( - i - j ) ]
= 2 evB₀ k
Force is upward.
<span>the answer is - resonance
</span>
Answer:
The asteroid's acceleration at this point is
Explanation:
The equation that governs the trajectory of asteroid is given by :

The velocity of asteroid is given by :

At some point during the trip across the screen, the asteroid is at rest. It means, v = 0
So,
Acceleration,
Put t = 0.971 s

So, the asteroid's acceleration at this point is
and it is decelerating.
Answer:
692.31 N
Explanation:
Applying,
F = ma............... Equation 1
Where F = Average force required to stop the player, m = mass of the player, a = acceleration of the player
But,
a = (v-u)/t............ Equation 2
Where v = final velocity, u = initial velocity, t = time.
Substitute equation 2 into equation 1
F = m(v-u)/t............ Equation 3
From the question,
Given: m = 75 kg, u = 6.0 m/s, v = 0 m/s (to stop), t = 0.65 s
Substitute these values into equation 3
F = 75(0-6)/0.65
F = -692.31 N
Hence the average force required to stop the player is 692.31 N
Answer:
6.86 × 10²⁴ kg
Explanation:
The mass of the earth m = density of earth, ρ × volume of earth, V
m = ρV
The density of the earth, ρ = 5515 kg/m³ and since the earth is a sphere, its volume is the volume of a sphere V = 4πr³/3 where r = radius of the earth = 6.67 × 10⁶ m
Since m = ρV
m = ρ4πr³/3
So, substituting the values of the variables into the equation for the mass of the earth, m, we have
m = 5515 kg/m³ × 4π(6.67 × 10⁶ m)³/3
m = 5515 kg/m³ × 4π × 296.741 × 10¹⁸ m³/3
m = 5515 kg/m³ × 1189.9639π × 10¹⁸ m³/3
m = 6546105.64378π × 10¹⁸ kg/3
m = 20565197.400122 × 10¹⁸ kg/3
m = 6855065.8 × 10¹⁸ kg
m = 6.8550658 × 10²⁴ kg
m ≅ 6.86 × 10²⁴ kg