Answer:
The intensity of the electric field is

Explanation:
The electric field equation is given by:

Where:
- k is the Coulomb constant
- q is the charge at 0.4100 m from the balloon
- d is the distance from the charge to the balloon
As we need to find the electric field at the location of the balloon, we just need the charge equal to 1.99*10⁻⁷ C.
Then, let's use the equation written above.


I hope it helps you!
Answer:
19.53 cm
Explanation:
The computation of the height is as follows:
Here we applied the conservation of the energy formula
As we know that
P.E of the block = P.E of the spring
m g h = ( 1 ÷ 2) k x^2
where
m = 0.15
g = 9.81
k = 420
x = 0.037
So now put the values to the above formula
(0.15) (9.81) (h) = 1 ÷2 × 420 × (0.037)^2
1.4715 (h) = 0.28749
h = 0.19537 m
= 19.53 cm
When air resistance<span> acts, acceleration during a fall </span>will<span> be less than g because </span>air resistance affects<span> the motion of the falling </span>objects<span> by slowing it down. </span>Air resistance<span> depends on two important factors - the</span>speed<span> of the </span>object<span> and its surface area. Increasing the surface area of an </span>object<span> decreases its </span>speed<span>.</span>
Answer:
2.63 cm
Explanation:
Hooke's law gives that the force F is equal to cy where c is spring constant and x is extension
Making c the subject of the formula then

Since F is gm but taking the given mass to be F

By substitution now considering F to be 3.3 kg

More force needs to be applied