In practice, something that follows a very predictable pattern can be used as a time standard. This include things like radioactive decay, planetary orbit, and the speed of light, among others.
The perspective which best explain this is SOCIO-CULTURAL PERSPECTIVE.
Socio-cultural perspective is a theory which explains the awareness of situations surrounding people and how their behavior is determined by their environment, culture and social values.
Answer:
Option (D) is correct.
Explanation:
The balloon lands horizontally at a distance of 420 m from a point where it as released.
Velocity of air balloon along +X axis =10 m/s
velocity of ball=4 m/s along + X axis
the velocity of balloon gets added to the velocity of ball. So the resultant velocity of the balloon=10+4 = 14 m/s
time taken= 30 s
The distance traveled is given by d= v t
d= 14 (30)
d= 420 m
Thus the balloon lands horizontally at a distance of 420 m from a point where it as released.
Answer:
a. 13.7 s b. 6913.5 m
Explanation:
a. How much time before being directly overhead should the box be dropped?
Since the box falls under gravity we use the equation
y = ut - 1/2gt² where y = height of plane above ocean = 919 m, u = initial vertical velocity of airplane = 0 m/s, g = acceleration due to gravity = -9.8 m/s² and t = time it takes the airplane to be directly overhead.
So,
y = ut - 1/2gt²
y = 0 × t - 1/2gt²
y = 0 - 1/2gt²
y = - 1/2gt²
t² = -2y/g
t = √(-2y/g)
So, t = √(-2 × 919 m/-9.8 m/s²)
t = √(-1838 m/-9.8 m/s²)
t = √(187.551 m²/s²)
t = 13.69 s
t ≅ 13.7 s
So, the box should be dropped 13.69 s before being directly overhead.
b. What is the horizontal distance between the plane and the victims when the box is dropped?
The horizontal distance x between plane and victims, x = speed of plane × time it takes for box to drop = 505 m/s × 13.69 s = 6913.45 m ≅ 6913.5 m
By ideal gas theory, cylinder b has the higher temperature.
We need to know about the ideal gas theory to solve this problem. The ideal gas can be represented by
P . V = n . R . T
where P is the pressure, V is volume, n is the number of molecules, R is the ideal gas constant and T is temperature.
From the question above, we know that
Pa = Pb = P
na = 3nb
Find the temperature of the cylinder a
P . V = n . R . Ta
Ta = P . V /( na . R )
Substitute na
Ta = P . V /( (3nb) . R )
Ta = (1/3) x (P . V /( (nb . R ))
Find the temperature of the cylinder b
P . V = n . R . Tb
Tb = P . V /( nb . R )
The cylinder a temperature is 3 times smaller than the temperature in cylinder b.
Find more on ideal gas at: brainly.com/question/25290815
#SPJ4