Answer:
work done lifting the bucket (sand and rope) to the top of the building,
W=67.46 Nm
Explanation:
in this question we have given
mass of bucket=20kg
mass of rope=
height of building= 15 meter
We have to find the work done lifting the bucket (sand and rope) to the building =work done in lifting the rope + work done in lifting the sand
work done in lifting the rope is given as,
=
..............(1)
=
=22.5 Nm
work done in lifting the sand is given as,
.................(2)
Here,
F=mx+c
here,
c=20-18
c=2
m=
m=.133
Therefore,

Put value of F in equation 2


Therefore,
work done lifting the bucket (sand and rope) to the top of the building,
W=22.5 Nm+44.96 Nm
W=67.46 Nm
The electric output of the plant is 48.19 MW
First we need to calculate the water power, it is given by the formula
WP=ρQgh
Here, ρ=1000 kg/m3 is density of water,Q is the flow rate, g is the gravity, and h is the water head
Therefore, WP=1000*65*9.81*90=57388500 W=57.38 MW
Now the overall efficiency of the hydroelectric power plant is given as
η=
Plugging the values in the above equation
0.84=EP/57.38
EP=48.19 MW
Therefore, the electric output of the plant is 48.19 MW.
At the time of quark confinement, when the universe was 10-6 seconds old, there is found to be one additional proton for every billion antiprotons.
<h3>What is quark confinement?</h3>
Note that one quark is never found on its own but if particles are said to be smashed together and quarks are found, they are said to be like ends of rubber bands that expands.
Hence, At the time of quark confinement, when the universe was 10-6 seconds old, there is found to be one additional proton for every billion antiprotons.
Learn more about quark from
brainly.com/question/15103512
#SPJ1
Answer:
They break off large ice sheets found at the North and South poles.