Answer:
132.17 g
Explanation:
The reaction given , in the question is -
CH₄ (g ) + 4 S ( g ) ---> CS₂ ( g ) + 2H₂S ( g )
From the reaction , 4 mole of S is required for the production of 1 mole of CS₂ .
since ,
Moles of CS₂ = given mass of CS₂ / Molecular weight of CS₂
Since ,
the Molecular weight of CS₂ = 76
Given , mass of CS₂ = 72.57 g
Moles of CS₂ = 72.57 / 76 = 0.95 mol
Since ,
The yield is 92.0 % .
Moles of S required = 4 * 0.95 mol / 0.92 = 4.13 moles
Mass of S required = 4.13 * 32 = 132.17 g .
Answer:
<em>d</em><em>u</em><em>r</em><em>i</em><em>n</em><em>g</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>p</em><em>r</em><em>o</em><em>c</em><em>e</em><em>s</em><em>s</em><em> </em><em>o</em><em>f</em><em> </em><em>p</em><em>h</em><em>o</em><em>t</em><em>o</em><em>s</em><em>y</em><em>n</em><em>t</em><em>e</em><em>s</em><em>i</em><em>s</em><em>,</em><em>o</em><em>r</em><em>g</em><em>a</em><em>n</em><em>i</em><em>s</em><em>m</em><em>s</em><em> </em><em>u</em><em>s</em><em>e</em><em> </em><em>c</em><em>a</em><em>r</em><em>b</em><em>o</em><em>n</em><em> </em><em>d</em><em>i</em><em>o</em><em>x</em><em>i</em><em>d</em><em>e</em><em> </em><em>a</em><em>n</em><em>d</em><em> </em><em>s</em><em>u</em><em>n</em><em>l</em><em>i</em><em>g</em><em>h</em><em>t</em><em> </em><em>t</em><em>o</em><em> </em><em>p</em><em>r</em><em>o</em><em>d</em><em>u</em><em>c</em><em>s</em><em> </em><em><u>g</u></em><em><u>l</u></em><em><u>u</u></em><em><u>c</u></em><em><u>o</u></em><em><u>s</u></em><em><u>e</u></em><em><u>(</u></em><em><u>f</u></em><em><u>o</u></em><em><u>o</u></em><em><u>d</u></em><em><u>)</u></em><em><u>.</u></em>
Answer:
They are protection from the cell!
Explanation:
They move liquid around the cells and have the same internal structure as each other. They are also found in most microorganisms. Hope this helps :)
Heterogenous mixtures can separates due to differences in size of components
Answer:
With thermodynamics, one cannot determine <u>the speed of a reaction</u>.
Explanation:
Chemical thermodynamics, a branch of chemistry that deals with study of interrelation of the heat and the work with the chemical reactions or with the physical changes of the state within confines of laws of thermodynamics.
Chemical thermodynamics' structure is derived from first two laws of chemical thermodynamics. From fundamental equations of Gibbs, a multitude of some equations which relates thermodynamic properties of thermodynamic system can be derived and can be used to calculate the reaction spontaneity, equilibrium constant, etc.
<u>Thermodynamics predicts about the direction, feasibility and the extent of a chemical process, it does not tell anything about the rate at which a chemical process may proceed.</u>
<u></u>