Answer:
Cuanto más fuerte es el ácido, más rápido se disocia para generar H +start superscript, plus, end superscript. Por ejemplo, el ácido clorhídrico (HCl) se disocia completamente en iones hidrógeno y cloruro cuando se mezcla con agua, por lo que se considera un ácido fuerte.
Answer:
<u>Foot per second. Foot-pound-second system. Frames per second, the frequency (rate) at which consecutive images (frames) appear on a display.</u>
Explanation:
:)
To locate a specific target or to determine how close submarines are to the seafloor, they use active and passive sound navigation and ranging (or a SONAR, in simple terms.) It emits pulses of sound waves that travel through the water, reflect off the target and relayed back to the ship. By determining how fast the sound wave travels back, the computers on the sub calculate how far they are from the target.
Hope this helps.
The answer to this question is B, Reacts with sunlight.
The 2 main properties of substances are their physical properties and chemical properties.
Physical properties are some observable/measurable characteristics, such as their color, mass, state, melting point, conductivity etc.
Meanwhile, for chemical properties, they're about how the substance reacts with other substances, such as metals react with acid to form hydrogen. And by the word "react", it means there's no way turn the reaction product back to the original substance without using chemical methods such as heating or electrolysis.
Therefore, all the choices above are physical properties of hydrogen peroxide except for B, as it is the only choice that relates to the substance reacting to another substance.
Answer:
t_{out} =
t_{in}, t_{out} = 
Explanation:
This in a relative velocity exercise in one dimension,
let's start with the swimmer going downstream
its speed is

The subscripts are s for the swimmer, r for the river and g for the Earth
with the velocity constant we can use the relations of uniform motion
= D / 
D = v_{sg1} t_{out}
now let's analyze when the swimmer turns around and returns to the starting point

= D / 
D = v_{sg 2} t_{in}
with the distance is the same we can equalize

t_{out} = t_{in}
t_{out} =
t_{in}
This must be the answer since the return time is known. If you want to delete this time
t_{in}= D / 
we substitute
t_{out} = \frac{v_s - v_r}{v_s+v_r} ()
t_{out} = 