Answer:
The time is 0.563 ns.
Explanation:
Given that,
Index of refraction of glass = 1.41
Distance = 12.0 cm
Angle = 33.0°
We need to calculate the refraction angle
Using Snell's law

put the value into the formula



We need to calculate the velocity of beam in glass
Using formula of velocity

Put the value into the formula


We need to calculate the time
Using formula of distance





Hence, The time is 0.563 ns.
Answer:
Not necessarily
Explanation:
Rain needs some mechanism such as instability of vertical air movement.
Answer:
The vector equation of the line is

Parametric equations for given line are

Explanation:
The vector equation of the line is given by

r₀ = (7, -8, 3)
v = (1, 6, -13)
At these points the vector equation for this line is:

Parametric equations for given line are

Answer:
0.265
Explanation:
Draw a free body diagram. There are four forces:
Normal force Fn pushing up.
Weight force mg pulling down.
Tension force T at an angle θ.
Friction force Fn μ pushing left.
Sum the forces in the y direction:
∑F = ma
Fn + T sin θ − mg = 0
Fn = mg − T sin θ
Sum the forces in the x direction:
∑F = ma
T cos θ − Fn μ = 0
Fn μ = T cos θ
μ = T cos θ / Fn
μ = T cos θ / (mg − T sin θ)
Given T = 164 N, θ = 10.0°, m = 65.0 kg, and g = 9.8 m/s²:
μ = (164 N cos 10.0°) / (65.0 kg × 9.8 m/s² − 164 N sin 10.0°)
μ = 0.265
When an object does not move even on pushing , static frictional force acts on in opposite direction of the applied force to stop the object from moving. static frictional force is a self adjusting force and it adjust its value according to the applied force if the applied force is smaller than the maximum value of static frictional force. The object starts moving once the applied force on it becomes greater than the maximum static frictional force. hence the statement is true.