Answer: lessons and benefits can seem removed from everyday life. ... If they determine a site is significant, it is ... CRM exists because legislators and their con- ... romance of excavation and discovery of the past for ... Archaeology permits intensive study of a single culture over time, removing the myth
Answer:
Explanation:
State symbols are used in chemical equations to delineate the state of matter in which the reaction is taking place.
They give a good perspective of the state of the reactants and products obtainable.
There are basically four states of matter in every chemical reaction:
- Solids are symbolized by small letter (s)
- Liquids are represented by (l)
- Gases are shown by (g)
- Aqueous solutions having water as the medium by (aq)
These symbols appear as subscript in front of the chemical species.
No of moles= 88/44 =2
therefore no. of molecules =
therefore no.of molecules= 12.046*10^23
Answer:
See explanation below
Explanation:
In this case we have reaction of addition. In this case a diene reacting with an acid as HBr. This reaction is known as Hydrohalogenation, and, as we have a diene, this kind of reaction can be done as 1,4 addition. Which means that the reaction will be undergoing with an adition in the carbon 1, and carbon 4.
At room temperature we can expect that this reaction can be done in thermodynamic conditions, Now, as the problem states that is forming 4 products, we can expect products of a 1,2 addition too. This product can be formed if the reaction is taking place in the most stable carbocation, and then, by resonance, we can expect the 1,4 product too.
Now, the HBr can be attacked by the double bond of the first position, giving two possible products or by the double bond of the third position giving the other two products. These products are all possible, obviously the most stable will be the major of all of them, but the other three are perfectly possible. One product is formed without doing much, and the other by resonance. Same happens with the other double bond.
In the picture below, you have the mechanism for all the 4 products.
Hope this helps
It depends on the process.
Like for example if the process is isothermal(temperature is constant), you can use,
PV = constant or P1V1 = P2V2 where P1V1 are initial conditions and P2V2 are final.
For adiabatic process,
PV^gamma = constant or P1V1 ^gamma = P2V2 ^gamma.
where gamma = Cp
------
Cv
Cp = specific heat at constant pressure and Cv = specific at constant volume.
Value of Gamma will be given in question.
Hope this helps!